| [1] 尹云雷, 郭成, 杨红英, 等. 电子织物在智能可穿戴领域的研究进展[J]. 现代纺织技术, 2023, 31(1): 1-12.
YIN Y L, GUO C, YANG H Y, et al. Research progress of electronic fabrics in the intelligent wearable field[J]. Advanced Textile Technology, 2023, 31(1): 1-12.
[2] 梁嘉文, 李婷婷, 严占林, 等. 可穿戴设备的能源供给研究进展[J]. 现代纺织技术, 2023, 31(1): 28-39.
LIANG J W, LI T T, YAN Z L, et al. Research progress on energy supply of wearable devices[J]. Advanced Textile Technology, 2023, 31(1): 28-39.
[3] WANG J, ZHU X, XIONG P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2022, 10(2): 960-968.
[4] MASHKOUR M, RAHIMNEJAD M, MASHKOUR M, et al. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly[J]. Applied Energy, 2021, 282: 116150.
[5] 刘凡, 赵晓明, 郑煜昊, 等. 导电聚合物/磁性粒子复合吸波材料的研究进展[J]. 现代纺织技术, 2021, 29(6): 7-18.
LIU F, ZHAO X M, ZHENG Y H, et al. Research progress of the composite wave-absorbing material of conductive polymer/magnetic particle[J]. Advanced Textile Technology, 2021, 29(6): 7-18.
[6] 陈钦钦, 徐兆梅, 马廷方, 等. 细菌纤维素纳米纤维膜及纤维的制备与性能[J]. 现代纺织技术, 2023, 31(5): 66-75.
CHEN Q Q, XU Z M, MA T F, et al. Preparation and properties of bacterial cellulose nanofiber membranes and fibers[J]. Advanced Textile Technology, 2023, 31(5): 66-75.
[7] 薛雨晴, 唐颖, 袁久刚, 等. 细菌纤维素材料在服装领域中的应用进展[J]. 丝绸, 2025, 62(2): 67-74.
XUE Y Q, TANG Y, YUAN J G, et al. Application progress of bacterial cellulose materials in the apparel field[J]. Journal of Silk, 2025, 62(2): 67-74.
[8] SIRICHAIBHINYO T, SUPCHOCKSOONTHORN P, PAOPRASERT P, et al. The electrical conductivity of a bacterial cellulose and polyaniline composite significantly improved by activated carbon: A nano-based platform for electrodes[J]. ChemEngineering, 2024, 8(5): 87.
[9] WIJEWARDANE S. Potential applicability of CNT and CNT/composites to implement ASEC concept: A review article[J]. Solar Energy, 2009, 83(8): 1379-1389.
[10] DEYAA A F, DÖRLING B, ZAPATA-ARTEAGA O, et al. Farming thermoelectric paper[J]. Energy & Environmental Science, 2019, 12(2): 716-726.
[11] HADI H, KOKABI M, MOUSAVI S M. Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor[J]. Carbohydrate Polymers, 2018, 201: 228-235.
[12] LI W, WU Q, ZHAO X, et al. Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils[J]. Carbohydrate Polymers, 2014, 113: 403-410.
[13] WANG J, SONG Y, CUI F, et al. Preparation and characterization of nanocellulose fiber (CNF) by biological enzymatic method[J]. Journal of Thermoplastic Composite Materials, 2024, 37(3): 1223-1241.
[14] CAI R, CHEN Y, HU J, et al. A self-supported sodium alginate composite hydrogel membrane and its performance in filtering heavy metal ions[J]. Carbohydrate Polymers, 2023, 300: 120278.
[15] PINTO A M, GONÇALVES I C, MAGALHÃES F D. Graphene-based materials biocompatibility: A review[J]. Colloids and Surfaces B: Biointerfaces, 2013, 111: 188-202.
[16] PRODYUT D, PRATTO B, GONÇALVES CRUZ A J, et al. Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation[J]. Journal of Cleaner Production, 2019, 238: 117859.
[17] LUO H, DONG J, XU X, et al. Exploring excellent dispersion of graphene nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 290-297.
[18] YANG C, WANG F, YOU D, et al. In-situ chemical state transition of Ni nano-metal catalytic site promotes the reaction kinetics of lithium-sulfur battery[J]. Chemical Engineering Journal, 2024, 496: 153812.
[19] PINTO R J B, NEVES M C, NETO C P, et al. Growth and chemical stability of copper nanostructures on cellulosic fibers[J]. European Journal of Inorganic Chemistry, 2012, 2012(31): 5043-5049.
[20] PINTO R J B, MARQUES P A A P, NETO C P, et al. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers[J]. Acta Biomaterialia, 2009, 5(6): 2279-2289.
[21] KIM S S, JEON J H, KIM H I, et al. High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-oxidized bacterial cellulose[J]. Advanced Functional Materials, 2015, 25(23): 3560-3570.
[22] SHI Z, ZANG S, JIANG F, et al. In situ nano-assembly of bacterial cellulose-polyaniline composites[J]. RSC Advances, 2012, 2(3): 1040-1046.
[23] WANG H, BIAN L, ZHOU P, et al. Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(3): 578-584.
[24] LI S, HUANG D, YANG J, et al. Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices[J]. Nano Energy, 2014, 9: 309-317.
[25] YOON S H, JIN H J, KOOK M C, et al. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes[J]. Biomacromolecules, 2006, 7(4): 1280-1284.
[26] VIDAKIS N, PETOUSIS M, MICHAILIDIS N, et al. Multi-functional 3D-printed vat photopolymerization biomedical-grade resin reinforced with binary nano inclusions: The effect of cellulose nanofibers and antimicrobial nanoparticle agents[J]. Polymers, 2022, 14(9): 1903.
[27] KIANGKITIWAN N, SRIKULKIT K. Preparation and properties of bacterial cellulose/graphene oxide composite films using dyeing method[J]. Polymer Engineering & Science, 2021, 61(6): 1854-1863.
[28] WASIM M, KHAN M R, MUSHTAQ M, et al. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics[J]. Coatings, 2020, 10(4): 364.
[29] CHEN L F, HUANG Z H, LIANG H W, et al. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density[J]. Advanced materials, 2013, 25(34): 4746-4752.
[30] ZHAO Y, LIU Y, DU J, et al. Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications[J]. Applied Surface Science, 2019, 487: 442-451.
[31] GWIAZDECKI K, JUNKES E, MEIER M M, et al. An easy synthesis of polyaniline through bacterial nanocellulose membranes obtained from kombucha tea fermentation[J]. Macromolecular Symposia, 2024, 413(6): 2400069.
[32] WANG H, ZHU E, YANG J, et al. Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes[J]. The journal of physical chemistry, C. Nanomaterials and interfaces, 2012, 116(24): 13013-13019.
[33] KYRYCHENKO A, KARPUSHINA G V, SVECHKAREV D, et al. Fluorescence probing of thiol-functionalized gold nanoparticles: Is alkylthiol coating of a nanoparticle as hydrophobic as expected?[J]. The Journal of Physical Chemistry C, 2012, 116(39): 21059-21068.
[34] FARIA-TISCHER P C S, COSTA C A R, TOZETTI I, et al. Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes[J]. RSC Advances, 2016, 6(12): 9571-9580.
[35] WU Y, WANG F, WU Y, et al. Advanced ionic actuators with high-performance and high-reproducibility based on free-standing bacterial cellulose-reinforced poly(diallyldimethylammonium chloride) membranes and PEDOT/PSS electrodes[J]. Cellulose, 2023, 30(12): 7825-7837.
[36] KHAN S, UL-ISLAM M, ULLAH M W, et al. Synthesis and characterization of a novel bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite for use in biomedical applications[J]. Cellulose, 2015, 22(4): 2141-2148.
[37] LIANG Q, ZHANG D, WU Y, et al. Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21319-21329.
[38] LIANG Q, WAN J, JI P, et al. Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with "reinforced cement-sand" structure for self-stretchable solid supercapacitor[J]. Chemical Engineering Journal, 2022, 427: 131904.
[39] TEBYETEKERWA M, WANG X, MARRIAM I, et al. Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications[J]. Materials Letters, 2017, 209: 400-403.
[40] WU J, DU Z, XIONG P, et al. Fabrication of flexible polyindole/carbon nanotube/bacterial cellulose nanofiber nonwoven electrode doped by D-tartaric acid with high electrochemical performance[J]. Cellulose, 2020, 27(11): 6353-6366.
[41] YANG W, QU L, ZHENG R, et al. Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids[J]. Chemistry of Materials, 2011, 23(11): 2760-2765.
[42] CHEN Y, PANG L, LI Y, et al. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105960.
[43] HUANG H, SHAO R, WANG C, et al. Flexible, ultralight, ultrathin, and highly sensitive pressure sensors based on bacterial cellulose and silver nanowires[J]. Journal of Materials Science, 2022, 57(44): 20987-20998.
[44] LAI F, YONG D, NING X, et al. Carbon nanofibers: Bionanofiber assisted decoration of few-layered MoSe2 nanosheets on 3D conductive networks for efficient hydrogen evolution (small 7/2017)[J]. Small, 2017, 13(7): 13.
[45] SHAN D, YANG J, LIU W, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(35): 13589-13602.
[46] CAMPISI S, CHAN-THAW C E, VILLA A. Understanding heteroatom-mediated metal-support interactions in functionalized carbons: a perspective review[J]. Applied Sciences, 2018, 8(7): 1159.
[47] HU Z, LI S, CHENG P, et al. N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor[J]. Journal of Materials Science, 2016, 51(5): 2627-2633.
[48] WANG M, YANG Y, YANG Z, et al. Sodium-ion batteries: Improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping[J]. Advanced Science, 2017, 4(4): 1600468.
[49] LUO H, XIE J, XIONG L, et al. Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets[J]. Composites Part B: Engineering, 2019, 162: 484-490.
[50] LIU R, MA L, HUANG S, et al. Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors[J]. RSC Advances, 2016, 6(109): 107426-107432.
[51] ZHU J, YANG Q, TAO S, et al. Fabrication and characterization of bacterial cellulose/carbon nanotube composite conductive film and its impact on the luminance of flexible electroluminescent devices as the bottom electrode[J]. Materials Science and Engineering: B, 2024, 308: 117572.
[52] ZHANG J, HU S, SHI Z, et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface[J]. Nano Energy, 2021, 89: 106354.
[53] SUN J, XIU K, WANG Z, et al. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome[J]. Nano Energy, 2023, 108: 108215.
[54] GUAN F, XIE Y, WU H, et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS Nano, 2020, 14(11): 15428-15439.
[55] LIANG Q, ZHANG D, WU Y, et al. Stretchable helical fibers with skin-core structure for pressure and proximity sensing[J]. Nano Energy, 2023, 113: 108598.
[56] LING Z C, YANG H B, HAN Z M, et al. Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose[J]. NPG Asia Materials, 2023, 15: 19.
[57] HU S, HAN J, SHI Z, et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator[J]. Nano-Micro Letters, 2022, 14(1): 115.
[58] CHEN K, LI Y, DU Z, et al. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor[J]. Nano Energy, 2022, 102: 107740.
[59] 张欣宇, 殷霞, 高守武, 等. 应变传感式智能手套的制备与性能[J]. 现代纺织技术, 2025, 33(3): 102-109.
ZHANG X Y, YIN X, GAO S W, et al. Preparation and performance of strain-sensing smart gloves[J]. Advanced Textile Technology, 2025, 33(3): 102-109.
[60] 沈雷, 孙湉. 智能可穿戴领域研究现状和发展趋势[J]. 服装学报, 2023, 8(2): 125-133.
SHEN L, SUN T. Intelligent wearable research status and its development trend[J]. Journal of Clothing Research, 2023, 8(2): 125-133. |