| [1]BAGHERZADEH R,ABRISHAMI S,SHIRALI A,et al.Wearable and flexible electrodes in nanogenerators for energy harvesting,tactile sensors,and electronic textiles:Novel materials,recent advances,and future perspectives[J].Materials Today Sustainability,2022,20:100233.
[2]CUI X,ZHANG Y,HU G,et al.Dynamical charge transfer model for high surface charge density triboelectric nanogenerators[J].Nano Energy,2020,70:104513.
[3]SHI Q,HE T,LEE C.More than energy harvesting:Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems[J].Nano Energy,2019,57:851-871.
[4]HUANG P,WEN D L,QIU Y,et al.Textile-based triboelectric nanogenerators for wearable self-powered microsystems[J].Micromachines,2021,12(2):158.
[5]周随波,王哲山,胡建臣,等.织物电极的制备及其在间隔织物摩擦纳米发电机的应用研究进展[J].现代纺织技术,2023,31(1):54-63.ZHOU S B,WANG Z S,HU J C,et al.Preparation of the fabric electrode and its application in spacer fabric-based triboelectric nanogenerators[J].Advanced Textile Technology,2023,31(1):54-63.
[6]KWON J H,JEONG J,LEE Y,et al.Importance of architectural asymmetry for improved triboelectric nanogenerators with 3D spacer fabrics[J].Macromolecular Research,2021,29(6):443-447.
[7]XU F,JIN X,LAN C,et al.3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles[J].Nano Energy,2023,109:108312.
[8]刘津池,于淼,王侠,等.摩擦纳米发电机在织物基智能可穿戴中的应用[J].现代纺织技术,2020,28(4):53-63.LIU J C,YU M,WANG X,et al.Application of triboelectric nanogeneratorsin fabric-based intelligent wearable devices[J].Advanced Textile Technology,2020,28(4):53-63.
[9]孙莹,史浩雨,刘金霖,等.可穿戴摩擦纳米发电纺织品:材料、制造与应用[J].材料工程,2024,52(8):15-28.SUN Y,SHI H Y,LIU J L,et al.Wearable triboelectric nanogenerator textiles:Materials,manufacturing and applications[J].Journal of Materials Engineering,2024,52(8):15-28.
[10]ZHANG Y,HU H,KYOSEV Y,et al.Finite element modeling of 3D spacer fabric:Effect of the geometric variation and amount of spacer yarns[J].Composite Structures,2020,236:111846.
[11]黄玉清,宋晓霞.三维间隔织物编织工艺及应用[J].针织工业,2024(1):16-20.HUANG Y Q,SONG X X.Knitting technology and application of three-dimensional spacer fabrics[J].Knitting Industries,2024(1):16-20.
[12]WANG Z L.Fundamentals of triboelectric nanogenerators[M]//Handbook of triboelectric nanogenerators.Cham:Springer International Publishing,2023:1-30.
[13]WANG Z L,WANG A C.On the origin of contact-electrification[J].Materials Today,2019,30:34-51.
[14]SOIN N,SHAH T H,ANAND S C,et al.Novel"3-D spacer"all fibre piezoelectric textiles for energy harvesting applications[J].Energy&Environmental Science,2014,7(5):1670-1679.
[15]ZHANG R,HUMMELGÅRD M,JONAS Ö,et al.Interaction of the human body with triboelectric nanogenerators[J].Nano Energy,2019,57:279-292.
[16]GONG J,XU B,GUAN X,et al.Towards truly wearable energy harvesters with full structural integrity of fiber materials[J].Nano Energy,2019,58:365-374.
[17]LIU D,YIN X,GUO H,et al.A constant current triboelectric nanogenerator arising from electrostatic breakdown[J].Science Advances,2019,5(4):eaav6437.
[18]赵一希.横编间隔织物的摩擦电性能研究[D].无锡:江南大学,2023.ZHAO Y X.Study on triboelectric properties of flat knitted spacer fabric[D].Wuxi:Jiangnan University,2023.
[19]KIM D K,JEONG J B,LIM K,et al.Improved output voltage of a nanogenerator with 3D fabric[J].Journal of Nanoscience and Nanotechnology,2020,20(8):4666-4670.
[20]YIP J,NG S P.Study of three-dimensional spacer fabrics:Physical and mechanical properties[J].Journal of Materials Processing Technology,2008,206(1/2/3):359-364.
[21]HOU X,HU H,SILBERSCHMIDT V V.A study of computational mechanics of 3D spacer fabric:Factors affecting its compression deformation[J].Journal of Materials Science,2012,47(9):3989-3999.
[22]黄玉清,宋晓霞.新型纬编间隔织物及其复合材料的冲击性能[J].上海纺织科技,2023,51(10):20-26.HUANG Y Q,SONG X X.An innovative weft-knitted spacer fabric and the impact properties of its composites[J].Shanghai Textile Science&Technology,2023,51(10):20-26.
[23]LI Z,JIN G,MA Y,et al.Preparation and performance of 3D woven triboelectric nanogenerators with integrated friction and spacer layers[J].Composite Structures,2023,322:117430.
[24]NIU S,WANG S,LIN L,et al.Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J].Energy&Environmental Science,2013,6(12):3576.
[25]CHEN A,ZHANG C,ZHU G,et al.Polymer materials for high-performance triboelectric nanogenerators[J].Advanced Science,2020,7(14):2000186.
[26]DONG K,DENG J,ZI Y,et al.3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors[J].Advanced Materials,2017,29(38):1702648.
[27]KWAK S S,KIM H,SEUNG W,et al.Fully stretchable textile triboelectric nanogenerator with knitted fabric structures[J].ACS Nano,2017,11(11):10733-10741.
[28]孙雄飞.足底柔性摩擦纳米发电机的研究与制备[D].上海:东华大学,2018.SUN X F.Research and preparation of nano-generator with sole flexible friction[D].Shanghai:Donghua University,2018.
[29]WANG Y,WANG L,YANG T,et al.Wearable and highly sensitive graphene strain sensors for human motion monitoring[J].Advanced Functional Materials,2014,24(29):4666-4670.
[30]ZHU M,HUANG Y,NG W S,et al.3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production[J].Nano Energy,2016,27:439-446.
[31]LIU L,PAN J,CHEN P,et al.A triboelectric textile templated by a three-dimensionally penetrated fabric[J].Journal of Materials Chemistry A,2016,4(16):6077-6083.
[32]ZHU M,SHI Q,HE T,et al.Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring[J].ACS Nano,2019,13(2):1940-1952.
[33]KIM K,JUNG M,JEON S,et al.Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection[J].Smart Materials and Structures,2019,28(6):065019.
[34]YU A,PU X,WEN R,et al.Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths[J].ACS Nano,2017,11(12):12764-12771.
[35]CHEN J,HE T,DU Z,et al.Review of textile-based wearable electronics:from the structure of the multi-level hierarchy textiles[J].Nano Energy,2023,117:108898.
[36]高玥,陶庆云,孟粉叶,等.编织芯鞘型摩擦发电传感纱的结构参数对其性能的影响[J].现代纺织技术,2024,32(7):1-12.GAO Y,TAO Q Y,MENG F Y,et al.Influence of structural parameters on the performance of braided core-sheath triboelectric sensing yarns[J].Advanced Textile Technology,2024,32(7):1-12.
[37]WANG Q,PENG X,ZU Y,et al.Scalable and washable 3D warp-knitted spacer power fabrics for energy harvesting and pressure sensing[J].Journal of Physics D:Applied Physics,2021,54(42):424006.
[38]LI M,XU B,LI Z,et al.Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing[J].Chemical Engineering Journal,2022,450:137491.
[39]秦继恩,唐玉芹,秦秀宪,等.MXene/尼龙织物的制备及其导电性能[J].现代纺织技术,2024,32(8):1-6.QIN J E,TANG Y Q,QIN X X,et al.Preparation of MXene/nylon fabrics and their conductive properties[J].Advanced Textile Technology,2024,32(8):1-6.
[40]HUANG Y,SONG X.Study on an innovative knitting technology of spacer fabrics and the low-velocity impact properties of its composites[J].Textile Research Journal,2023,93(5/6):1142-1152.
[41]DEJENE B K,GUDAYU A D.Exploring the potential of 3D woven and knitted spacer fabrics in technical textiles:A critical review[J].Journal of Industrial Textiles,2024,54:15280837241253614.
[42]HALBRECHT A,KINSBURSKY M,PORANNE R,et al.3D printed spacer fabrics[J].Additive Manufacturing,2023,65:103436.
[43]REPOULIAS A,VASSILIADIS S,GALATA S F.Triboelectricity and textile structures[J].The Journal of the Textile Institute,2021,112(10):1580-1587.
[44]许子傲,郭浩,吴雅梦,等.摩擦发电织物的性能提升策略与应用研究[J].纺织高校基础科学学报,2024,37(1):1-9.XU Z A,GUO H,WU Y M,et al.Performance enhancement strategies and practical applications of triboelectric power generation fabrics[J].Basic Sciences Journal of Textile Universities,2024,37(1):1-9.
[45]WANG Z,RUAN Z,NG W S,et al.Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric[J].Small Methods,2018,2(10):1800150.
[46]AZADIAN M,HASANI H,SHOKRIEH M M.Flexural behavior of composites reinforced with innovative 3D integrated weft-knitted spacer fabrics[J].Journal of Industrial Textiles,2018,48(1):58-76.
[47]刘梦婕,路丽莎,江学为,等.基于仿生学的横编保暖面料开发与性能评价[J].丝绸,2025,62(2):29-35.LIU M J,LU L S,JIANG X W,et al.Development and performance evaluation of transversely woven thermal fabrics based on bionics[J].Journal of Silk,2025,62(2):29-35.
[48]ABOUNAIM M,HOFFMANN G,DIESTEL O,et al.Thermoplastic composite from innovative flat knitted 3D multi-layer spacer fabric using hybrid yarn and the study of 2D mechanical properties[J].Composites Science and Technology,2010,70(2):363-370.
[49]汪玥,宋晓霞.电脑横机三维间隔织物应用与工艺研究[J].针织工业,2024(11):75-79.WANG Y,SONG X X.Application and technology of three-dimensional spacer fabric knitted on computerized flat knitting machine[J].Knitting Industries,2024(11):75-79.
[50]王迎豪,杨昆.经编间隔织物压缩性能研究[J].针织工业,2022(12):10-14.WANG Y H,YANG K.Compressive properties of warp knitted spacer fabrics[J].Knitting Industries,2022(12):10-14.
[51]吴紫娟,夏风林,吴光军,等.变结构参数纬编间隔织物的设计及压缩性能[J].现代纺织技术,2025,33(5):134-143.WU Z J,XIA F L,WU G J,et al.Design and compression performance of variable structure parameter weft knitted spacer fabrics[J].Advanced Textile Technology,2025,33(5):134-143.
[52]黄丽丽.不同连接方式的叠层经编间隔织物压缩性能研究[D].无锡:江南大学,2023.HUANG L L.Study on compressive properties of laminated warp knitted spacer fabrics with different connection methods[D].Wuxi:Jiangnan University,2023.
[53]WANG W,YU A,ZHAI J,et al.Recent progress of functional fiber and textile triboelectric nanogenerators:Towards electricity power generation and intelligent sensing[J].Advanced Fiber Materials,2021,3(6):394-412.
[54]WEN J,XU B,ZHOU J.Towards 3D knitted-fabric derived supercapacitors with full structural and functional integrity of fiber and electroactive materials[J].Journal of Power Sources,2020,473:228559.
[55]PU X,LI L,SONG H,et al.A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics[J].Advanced Materials,2015,27(15):2472-2478. |