现代纺织技术 ›› 2022, Vol. 30 ›› Issue (2): 48-56.DOI: 10.19398/j.att.202106018
收稿日期:
2021-06-07
出版日期:
2022-03-10
网络出版日期:
2021-08-03
通讯作者:
郑飂默,E-mail: zhengliaomo@sict.ac.cn作者简介:
许胜宝(1993-),男,辽宁丹东人,硕士研究生,主要从事计算机视觉方面的研究。
基金资助:
XU Shengbao1a, ZHENG Liaomo2,3(), YUAN Decheng1b
Received:
2021-06-07
Published:
2022-03-10
Online:
2021-08-03
摘要:
由于布匹疵点种类分布不均,部分疵点具有极端的宽高比,而且小目标较多,导致检测难度大,因此提出一种改进级联R-CNN的布匹疵点检测方法。针对小目标问题,在R-CNN部分采用在线难例挖掘,加强对小目标的训练;针对布匹疵点极端的长宽比,在特征提取网络中采用了可变形卷积v2来代替传统的正方形卷积,并结合布匹特征重新设计边界框比例。最后采用完全交并比损失作为边界框回归损失,获取更精确的目标边界框。结果表明:对比改进前的模型,改进后的模型预测边界框更加精确,对小目标的疵点检测效果更好,在准确率上提升了3.57%,平均精确度均值提升了6.45%,可以更好地满足面料疵点的检测需求。
中图分类号:
许胜宝, 郑飂默, 袁德成. 基于改进级联R-CNN的面料疵点检测方法[J]. 现代纺织技术, 2022, 30(2): 48-56.
XU Shengbao, ZHENG Liaomo, YUAN Decheng. A method for fabric defect detection based on improved cascade R-CNN[J]. Advanced Textile Technology, 2022, 30(2): 48-56.
编号 | 瑕疵 | 图片数/张 | 目标数/个 | 编号 | 瑕疵 | 图片数/张 | 目标数/个 |
---|---|---|---|---|---|---|---|
1 | 破洞 | 150 | 312 | 11 | 吊经 | 147 | 160 |
2 | 水渍、油渍、污渍 | 259 | 401 | 12 | 粗纬 | 545 | 915 |
3 | 三丝 | 845 | 1055 | 13 | 纬缩 | 262 | 452 |
4 | 结头 | 1447 | 1996 | 14 | 浆斑 | 284 | 336 |
5 | 花板跳 | 122 | 134 | 15 | 整经结 | 186 | 473 |
6 | 百脚 | 140 | 161 | 16 | 星跳、跳花 | 295 | 302 |
7 | 毛粒 | 160 | 195 | 17 | 断氨纶 | 222 | 546 |
8 | 粗经 | 205 | 213 | 18 | 稀密档、浪纹档、色差档 | 354 | 361 |
9 | 松经 | 359 | 396 | 19 | 磨痕、轧痕、修痕、烧毛痕 | 415 | 470 |
10 | 断经 | 265 | 284 | 20 | 死皱、云织、双纬、双经、 跳纱、筘路、纬纱不良 | 289 | 361 |
表1 布匹瑕疵的分类与数量
Tab.1 Classification and quantity of fabric defects
编号 | 瑕疵 | 图片数/张 | 目标数/个 | 编号 | 瑕疵 | 图片数/张 | 目标数/个 |
---|---|---|---|---|---|---|---|
1 | 破洞 | 150 | 312 | 11 | 吊经 | 147 | 160 |
2 | 水渍、油渍、污渍 | 259 | 401 | 12 | 粗纬 | 545 | 915 |
3 | 三丝 | 845 | 1055 | 13 | 纬缩 | 262 | 452 |
4 | 结头 | 1447 | 1996 | 14 | 浆斑 | 284 | 336 |
5 | 花板跳 | 122 | 134 | 15 | 整经结 | 186 | 473 |
6 | 百脚 | 140 | 161 | 16 | 星跳、跳花 | 295 | 302 |
7 | 毛粒 | 160 | 195 | 17 | 断氨纶 | 222 | 546 |
8 | 粗经 | 205 | 213 | 18 | 稀密档、浪纹档、色差档 | 354 | 361 |
9 | 松经 | 359 | 396 | 19 | 磨痕、轧痕、修痕、烧毛痕 | 415 | 470 |
10 | 断经 | 265 | 284 | 20 | 死皱、云织、双纬、双经、 跳纱、筘路、纬纱不良 | 289 | 361 |
疵点编号 | 算法 | |||
---|---|---|---|---|
Pre(Cascade R-CNN) | Pre+OHEM | Pre+OHEM+DCN v2 | Pre+OHEM+DCN v2+CIoU Loss | |
1 | 68.4 | 69.1 | 71.0 | 73.4 |
2 | 33.9 | 37.6 | 36.8 | 38.9 |
3 | 70.6 | 71.4 | 73.4 | 73.6 |
4 | 45.4 | 46.7 | 50.0 | 51.4 |
5 | 82.9 | 83.6 | 86.6 | 90.9 |
6 | 42.6 | 46.8 | 53.2 | 58.6 |
7 | 29.3 | 34.6 | 38.9 | 38.3 |
8 | 57.7 | 61.1 | 65.7 | 65.7 |
9 | 63.9 | 64.4 | 69.9 | 70.9 |
10 | 43.1 | 46.6 | 51.3 | 52.0 |
11 | 54.6 | 54.8 | 55.7 | 55.6 |
12 | 49.9 | 51.2 | 51.4 | 54.9 |
13 | 31.8 | 37.3 | 39.8 | 40.8 |
14 | 80.2 | 79.9 | 82.2 | 83.2 |
15 | 30.2 | 34.9 | 32.5 | 30.3 |
16 | 50.4 | 52.3 | 58.2 | 58.4 |
17 | 37.6 | 41.9 | 44.1 | 49.6 |
18 | 28.6 | 33.2 | 29.6 | 30.6 |
19 | 40.9 | 42.8 | 44.9 | 44.9 |
20 | 34.2 | 39.6 | 40.4 | 43.2 |
ACC | 93.63 | 92.87 | 96.47 | 97.20 |
mAP | 48.81 | 51.49 | 53.78 | 55.26 |
表2 模型改进前后的评价参数
Tab.2 Evaluation parameter before and after model improvement%
疵点编号 | 算法 | |||
---|---|---|---|---|
Pre(Cascade R-CNN) | Pre+OHEM | Pre+OHEM+DCN v2 | Pre+OHEM+DCN v2+CIoU Loss | |
1 | 68.4 | 69.1 | 71.0 | 73.4 |
2 | 33.9 | 37.6 | 36.8 | 38.9 |
3 | 70.6 | 71.4 | 73.4 | 73.6 |
4 | 45.4 | 46.7 | 50.0 | 51.4 |
5 | 82.9 | 83.6 | 86.6 | 90.9 |
6 | 42.6 | 46.8 | 53.2 | 58.6 |
7 | 29.3 | 34.6 | 38.9 | 38.3 |
8 | 57.7 | 61.1 | 65.7 | 65.7 |
9 | 63.9 | 64.4 | 69.9 | 70.9 |
10 | 43.1 | 46.6 | 51.3 | 52.0 |
11 | 54.6 | 54.8 | 55.7 | 55.6 |
12 | 49.9 | 51.2 | 51.4 | 54.9 |
13 | 31.8 | 37.3 | 39.8 | 40.8 |
14 | 80.2 | 79.9 | 82.2 | 83.2 |
15 | 30.2 | 34.9 | 32.5 | 30.3 |
16 | 50.4 | 52.3 | 58.2 | 58.4 |
17 | 37.6 | 41.9 | 44.1 | 49.6 |
18 | 28.6 | 33.2 | 29.6 | 30.6 |
19 | 40.9 | 42.8 | 44.9 | 44.9 |
20 | 34.2 | 39.6 | 40.4 | 43.2 |
ACC | 93.63 | 92.87 | 96.47 | 97.20 |
mAP | 48.81 | 51.49 | 53.78 | 55.26 |
光照强度 | ACC/% | mAP/% |
---|---|---|
3.0 | 96.00 | 49.83 |
4.0 | 96.27 | 49.35 |
4.5 | 96.67 | 50.84 |
5.0 | 96.83 | 54.87 |
5.5 | 97.27 | 51.78 |
6.0 | 97.27 | 50.95 |
7.0 | 96.73 | 49.66 |
10.0 | 94.93 | 48.05 |
未设置强度 | 97.20 | 55.26 |
表3 不同光照强度下测试集的对比
Tab.3 The comparison of the proposed algorithm under different light intensities on test sets
光照强度 | ACC/% | mAP/% |
---|---|---|
3.0 | 96.00 | 49.83 |
4.0 | 96.27 | 49.35 |
4.5 | 96.67 | 50.84 |
5.0 | 96.83 | 54.87 |
5.5 | 97.27 | 51.78 |
6.0 | 97.27 | 50.95 |
7.0 | 96.73 | 49.66 |
10.0 | 94.93 | 48.05 |
未设置强度 | 97.20 | 55.26 |
模型 | 训练集mAP/% | 测试集mAP/% |
---|---|---|
引入OHEM前 | 59.21 | 48.81 |
引入OHEM后 | 56.43 | 51.49 |
表4 引入OHEM前后的对比
Tab.4 The comparison before and after the introduction of OHEM
模型 | 训练集mAP/% | 测试集mAP/% |
---|---|---|
引入OHEM前 | 59.21 | 48.81 |
引入OHEM后 | 56.43 | 51.49 |
特征提取网络 | ACC/% | mAP/% |
---|---|---|
ResNet50 | 97.20 | 55.26 |
ResNet101 | 97.73 | 56.93 |
ResNext101 | 98.46 | 58.11 |
表5 算法在不同特征提取网络上的对比
Tab.5 The comparison of algorithms on different feature extraction networks
特征提取网络 | ACC/% | mAP/% |
---|---|---|
ResNet50 | 97.20 | 55.26 |
ResNet101 | 97.73 | 56.93 |
ResNext101 | 98.46 | 58.11 |
[1] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]// European Conference on Computer Vision, Cham: Pringer International Pubcishing, 2014:740-755. |
[2] |
HU X, XU X, XIAO Y, et al. SINet: A scale-insensitive convolutional neural network for fast vehicle detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3):1010-1019.
DOI URL |
[3] | LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017: 1222-1230. |
[4] | 陈康, 朱威, 任振峰, 等. 基于深度残差网络的布匹疵点检测方法[J]. 小型微型计算机系统, 2020, 41(4):800-806. |
CHEN Kang, ZHU Wei, REN Zhenfeng, et al. Fabric defect detection method based on deep residual network[J]. Journal of Chinese Mini-Micro Computer Systems. 2020, 41(4):800-806. | |
[5] | 孟志青, 邱健数. 基于级联卷积神经网络的复杂花色布匹瑕疵检测算法[J]. 模式识别与人工智能, 2020, 33(12):1135-1144. |
MENG Zhiqing, QIU Jianshu. Defect detection algorithm of complex pattern fabric based on cascaded convolution neural network[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(12):1135-1144. | |
[6] |
CHAWLA N V, BOWYER K W, HALL L O, et al. Synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16:321-357.
DOI URL |
[7] | YANG Y Z, XU Z. Rethinking the value of labels for improving class-imbalanced learning[EB/OL]. 2020: arXiv: 2006.07529[cs.LG]. https://arxiv.org/abs/2006.07529. |
[8] | CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 6154-6162. |
[9] | ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: More deformable, better results[C]// Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA. IEEE, 2019: 9300-9308. |
[10] | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 761-769. |
[11] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12993-13000.
DOI URL |
[12] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
DOI URL |
[13] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 770-778. |
[14] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017: 936-944. |
[15] | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// International Conference on Computer Vision. Venice, Italy. IEEE, 2017: 764-773. |
[16] | YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: An advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam The Netherlands. New York, NY, USA: ACM, 2016: 516-520. |
[17] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA. IEEE, 2019: 658-666. |
[18] | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: Improving object detection with one line of code[C]// International Conference on Computer Vision. Venice, Italy. IEEE, 2017: 5562-5570. |
[19] | NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// 18th International Conference on Pattern Recognition. Hong Kong, China. IEEE, 2006: 850-855. |
[20] | 安萌, 郑飂默, 王诗宇, 等. 一种改进Faster R-CNN的面料疵点检测方法[J]. 小型微型计算机系统, 2021, 42(5):1029-1033. |
AN Meng, ZHENG Liaomo, WANG Shiyu, et al. A fabric defect detection method based on improved faster R-CNN[J]. Journal of Chinese Computer Systems, 2021, 42(5):1029-1033. | |
[21] | 张泽苗, 霍欢, 赵逢禹. 深层卷积神经网络的目标检测算法综述[J]. 小型微型计算机系统, 2019, 40(9):1825-1831. |
ZHANG Zemiao, HUO Huan, ZHAO Fengyu. Survey of object detection algorithm based on deep convolutional neural networks[J]. Journal of Chinese Computer Systems, 2019, 40(9):1825-1831. | |
[22] |
PADILLA R, PASSOS W L, DIAS T L B, et al. A comparative analysis of object detection metrics with a companion open-source toolkit[J]. Electronics, 2021, 10(3):279.
DOI URL |
[23] | 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4):1201-1227. |
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: asurvey[J]. Journal of Software. 2021, 32(4):1201-1227. |
[1] | 周星亚, 孙红蕊, 宋荣, 夏克尔·赛塔尔. 基于并联堆叠模型的织物疵点检测算法[J]. 现代纺织技术, 2024, 32(9): 99-107. |
[2] | 耿聪, 王成群, 徐伟强. 纱线条干均匀度检测技术的研究进展[J]. 现代纺织技术, 2024, 32(7): 33-41. |
[3] | 张航瑞, 张建新. 可溶性染液浓度在线检测装置设计[J]. 现代纺织技术, 2024, 32(5): 58-64. |
[4] | 李丽娜 , 高 峰, 王勇军, 陈文兴, 吕汪洋. 聚对苯二甲酸乙二醇酯中低聚物组成的双检测器色谱法分析[J]. 现代纺织技术, 2024, 32(4): 38-44. |
[5] | 吕竞则, 戴宁, 胡旭东, 徐开心, 徐郁山. 静电荷感应式断纱传感器设计[J]. 现代纺织技术, 2024, 32(3): 14-20. |
[6] | 郭宇轩, 孙 林. 基于扩散模型的ControlNet网络虚拟试衣研究[J]. 现代纺织技术, 2024, 32(3): 118-128. |
[7] | 陆浩杰, 金恩琪, 李曼丽, 周 赳. 基于等上浆率上浆技术的浆纱质量指标建模与应用[J]. 现代纺织技术, 2024, 32(12): 68-75. |
[8] | 赵浩铭, 张团善, 马浩然, 任经琦. 基于语义分割的织物疵点检测算法研究[J]. 现代纺织技术, 2024, 32(1): 27-35. |
[9] | 王博润, 张 宁, 卢雨正. 基于特征提取和图像分类的螺旋网疵点自动检测[J]. 现代纺织技术, 2024, 32(1): 36-44. |
[10] | 王科, 金达莱. 共价有机框架作为通道材料的有机电化学晶体管的制备及性能[J]. 现代纺织技术, 2023, 31(5): 117-124. |
[11] | 韦秋菊, 孙晓婉, 徐平华, 徐明慧, 贾静. 机织物局部组织复原与密度自动测定[J]. 现代纺织技术, 2022, 30(6): 102-109. |
[12] | 梁慧芳, 张惠芳, 从明芳, 陈泽潭, 孙冲. 高光谱成像技术在纺织检测领域的研究进展[J]. 现代纺织技术, 2022, 30(6): 211-218. |
[13] | 郑雨婷, 王成群, 陈亮亮, 吴江, 吕文涛. 基于卷积神经网络的织物图像识别方法研究进展[J]. 现代纺织技术, 2022, 30(5): 1-11. |
[14] | 阮梦玉, 李敏, 何儒汉, 姚迅. 基于改进RefineDet的织物疵点检测[J]. 现代纺织技术, 2022, 30(5): 12-20. |
[15] | 陈传亮, 王成群, 吕文涛, 徐伟强. 纱线张力传感器的研究进展[J]. 现代纺织技术, 2022, 30(4): 32-41. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 210
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||