Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (2): 41-47.DOI: 10.19398/j.att.202103006
• Testing and Analysi • Previous Articles Next Articles
WANG Yanmeng, QIN Peng, ZHANG Wenguo
Received:
2021-03-03
Online:
2022-03-10
Published:
2021-08-04
王延蒙, 秦鹏, 张文国
作者简介:
王延蒙(1991-),男,山东菏泽人,讲师,硕士,主要从事纺织机械自动化设计方面的研究。
基金资助:
CLC Number:
WANG Yanmeng, QIN Peng, ZHANG Wenguo. Yarn diameter time series prediction based on piecewisepolymerization and Kalman filter[J]. Advanced Textile Technology, 2022, 30(2): 41-47.
王延蒙, 秦鹏, 张文国. 基于分段聚合和卡尔曼滤波的纱线直径时间序列预测[J]. 现代纺织技术, 2022, 30(2): 41-47.
关键指标 | T统计量 | 假定值 | 临界值 | ||
---|---|---|---|---|---|
10% | 5% | 1% | |||
数值结果 | -9.281 | 1e-10 | -2.570 | -3.187 | -2.714 |
Tab.1 ADF inspection results
关键指标 | T统计量 | 假定值 | 临界值 | ||
---|---|---|---|---|---|
10% | 5% | 1% | |||
数值结果 | -9.281 | 1e-10 | -2.570 | -3.187 | -2.714 |
编号 | 真值/% | 预测值/% | 相对误差/% |
---|---|---|---|
1 | 15.52 | 15.73 | 1.35% |
2 | 16.24 | 16.47 | 1.42% |
3 | 16.05 | 16.20 | 0.93% |
4 | 15.47 | 15.36 | 0.71% |
5 | 16.01 | 16.25 | 1.50% |
6 | 15.58 | 15.69 | 0.71% |
7 | 16.45 | 16.72 | 1.64% |
8 | 15.92 | 16.08 | 1.01% |
9 | 15.87 | 15.97 | 0.63% |
10 | 16.39 | 16.67 | 1.71% |
Tab.2 Predicted CV value of yarn sample segment
编号 | 真值/% | 预测值/% | 相对误差/% |
---|---|---|---|
1 | 15.52 | 15.73 | 1.35% |
2 | 16.24 | 16.47 | 1.42% |
3 | 16.05 | 16.20 | 0.93% |
4 | 15.47 | 15.36 | 0.71% |
5 | 16.01 | 16.25 | 1.50% |
6 | 15.58 | 15.69 | 0.71% |
7 | 16.45 | 16.72 | 1.64% |
8 | 15.92 | 16.08 | 1.01% |
9 | 15.87 | 15.97 | 0.63% |
10 | 16.39 | 16.67 | 1.71% |
预测方法 | BP神经 网络 | ELM | 改进 ELM | RBF神经 网络 | 本文 方法 |
---|---|---|---|---|---|
平均相对 误差/% | 8.30 | 4.31 | 1.61 | 0.48 | 1.16 |
Tab.3 CV value of yarn sample segmentspredicted in different models
预测方法 | BP神经 网络 | ELM | 改进 ELM | RBF神经 网络 | 本文 方法 |
---|---|---|---|---|---|
平均相对 误差/% | 8.30 | 4.31 | 1.61 | 0.48 | 1.16 |
样本 | 27.8tex-1 | 27.8tex-2 | 27.8tex-3 | 27.8tex-4 | 18.2tex-1 | 18.2tex-2 | 18.2tex-3 | 18.2tex-4 |
---|---|---|---|---|---|---|---|---|
预测平均直径/mm | 0.193 | 0.194 | 0.190 | 0.194 | 0.242 | 0.243 | 0.239 | 0.241 |
RMSE/% | 3.01 | 2.87 | 2.54 | 2.04 | 2.68 | 2.52 | 2.51 | 2.80 |
MAPE/% | 6.93 | 5.87 | 6.15 | 6.53 | 6.86 | 6.77 | 6.29 | 6.85 |
CV/% | 15.74 | 16.25 | 17.01 | 16.92 | 15.98 | 16.54 | 16.27 | 16.44 |
Tab.4 Generalization verification results
样本 | 27.8tex-1 | 27.8tex-2 | 27.8tex-3 | 27.8tex-4 | 18.2tex-1 | 18.2tex-2 | 18.2tex-3 | 18.2tex-4 |
---|---|---|---|---|---|---|---|---|
预测平均直径/mm | 0.193 | 0.194 | 0.190 | 0.194 | 0.242 | 0.243 | 0.239 | 0.241 |
RMSE/% | 3.01 | 2.87 | 2.54 | 2.04 | 2.68 | 2.52 | 2.51 | 2.80 |
MAPE/% | 6.93 | 5.87 | 6.15 | 6.53 | 6.86 | 6.77 | 6.29 | 6.85 |
CV/% | 15.74 | 16.25 | 17.01 | 16.92 | 15.98 | 16.54 | 16.27 | 16.44 |
[1] |
MATTES A, PUSCH T, CHERIF C. Numerical simulation of yarn tensile force for dynamic yarn supply systems of textile machines[J]. Journal of the Textile Institute, 2012, 103(1):70-79.
DOI URL |
[2] |
MALIK S A, TANWARI A, SYED U, et al. Blended yarn analysis:Part I-influence of blend ratio and break draft on mass variation,hairiness,and physical properties of 15 tex PES/CO blended ring-spun yarn[J]. Journal of Natural Fibers, 2012, 9(3):197-206.
DOI URL |
[3] | SELVANAYAKI M, VIJAVA M S, JAMUNA K S, et al. An interactive tool for yarn strength prediction using support vector regression[C]// Proceedings of the 2nd International Conference on Machine Learning and Computing(ICMLC 2010),Bangalore, India, IEEE, 2010:335-339. |
[4] |
MOKHTAR S, BEN A S, SAKLI F. Optimization of textile parameters of plain woven vascular prostheses[J]. Journal of the Textile Institute, 2010, 101(12):1095-1105.
DOI URL |
[5] | 张羽彤, 沈卓尔, 代利花, 等. 小规模样本精梳毛纺纱线质量预测[J]. 毛纺科技, 2020, 48(12):1-5. |
ZHANG Yutong, SHEN Zhuo'er, DAI Lihua, et al. Prediction of worsted yarn quality with small-scale samples[J]. Wool Textile Journal, 2020, 48(12):1-5. | |
[6] | 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(1):52-56,61. |
ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network[J]. Journal of Textile Research, 2019, 40(1):52-56, 61. | |
[7] | 李惠军, 朱磊. 基于BP人工神经网络的纱线毛羽预测研究[J]. 棉纺织技术, 2011, 39(1):32-34. |
LI Huijun, ZHU Lei. Research of yarn hairiness forecast based on BP artificial neural network[J]. Cotton Textile Technology, 2011, 39(1):32-34. | |
[8] | 邢鹏程. 基于Hadoop大数据平台的纺纱质量预测系统的研究与应用[D]. 上海:东华大学, 2018. |
XING Pengcheng. Research and Application of Spinning Quality Prediction System Using the Big Data Platform of Hadoop[D]. Shanghai: Donghua University, 2018. | |
[9] | 杨建国, 熊经纬, 徐兰, 等. 基于改进极限学习机的纱线质量预测[J]. 东华大学学报(自然科学版), 2015, 41(4):494-497,508. |
YANG Jianguo, XIONG Jingwei, XU Lan, et al. Yarn quality prediction based on improved extreme learning machine[J]. Journal of Donghua University (Natural Science), 2015, 41(4):494-497, 508. | |
[10] | 袁利华. 基于HVI指标与RBF神经网络的纱线质量预测[J]. 丝绸, 2014, 51(11):17-21. |
YUAN Lihua. Yarn quality prediction based on HVI indicator and RBF neural network[J]. Journal of Silk, 2014, 51(11):17-21. | |
[11] | MOHAMED N, SAMAR A E. Prediction of some cotton fiber blends properties using regression models[J]. Alexandria Engineering Journal, 2008, 47(2):1 47-153. |
[12] | 袁汝旺. 纱线条干均匀度检测方法基础研究[D]. 天津:天津工业大学, 2014. |
YUAN Ruwang. Basic Research on the Detection Method of Yarn Evenness[D]. Tianjin: Tianjin Polytechnic University, 2014. | |
[13] | 程立超. 基于线阵CCD的纱线条干不匀检测与评价[D]. 天津:天津工业大学, 2014. |
CHENG Lichao. Detection and Evaluation of Yarn Unevenness Based on Linear CCD[D]. Tianjin: Tianjin Polytechnic University, 2014. | |
[14] | 董清利. 时间序列组合预测模型的建立与应用研究[D]. 大连:东北财经大学, 2019. |
DONG Qingli. Research on the Establishment and Application of Time Series Combination Forecasting Model[D]. Dalian: Dongbei University of Finance and Economics, 2019. | |
[15] | 陈一鸣. 基于卡尔曼滤波的陀螺仪随机误差分析[J]. 电子测量技术, 2020, 43(17):97-100. |
CHEN Yiming. Analysis of gyro random error based on Kalman filter[J]. Electronic Measurement Technology, 2020, 43(17):97-100. | |
[16] | 郑培, 于立军, 侯胜亚, 等. 基于卡尔曼滤波修正的多步风电功率预测[J]. 热能动力工程, 2020, 35(4):235-241. |
ZHENG Pei, YU Lijun, HOU Shengya, et al. Multi-step wind power forecasting based on Kalman filter modification[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4):235-241. | |
[17] | 邓自立. 最优估计理论及其应用:建模、滤波、信息融合估计[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005. |
DENG Zili. Optimal Estimation Theory and Its Application: Modeling, Filtering and Information Fusion Estimation[M]. Harbin: Harbin Institute of Technology Press, 2005. | |
[18] | 程建华, 洪文. 统计学原理与应用[M]. 北京: 人民邮电出版社, 2013: 264. |
CHENG Jianhua, HONG Wen. Principles and Applications of Statistics[M]. Beijing: People's Posts and Telecommunications Press, 2013: 264. |
[1] | Zhang caiqian, Meng Shaoni, Li Junrong. The influence of air flow on the properties of cotton tight fabrics [J]. Advanced Textile Technology, 2024, 32(7): 74-79. |
[2] | XU Kaixina, DAI Ninga, b, RU Xina, HU Xudonga. Prediction of loom warp-out time based on LSTM recurrent neural network [J]. Advanced Textile Technology, 2023, 31(3): 70-80. |
[3] | WANG Yanmeng, QIN Peng, ZHANG Wenguo. Sub pixel subdivision algorithm of yarn diameter based on linear array [J]. Advanced Textile Technology, 2022, 30(4): 130-133. |
[4] | ZHENG Jinfeng, LUO Ronglei. Research progress on quantitative forecast methods of clothing sales [J]. Advanced Textile Technology, 2022, 30(2): 27-35. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 257
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 162
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||