[1] |
MATTES A, PUSCH T, CHERIF C. Numerical simulation of yarn tensile force for dynamic yarn supply systems of textile machines[J]. Journal of the Textile Institute, 2012, 103(1):70-79.
DOI
URL
|
[2] |
MALIK S A, TANWARI A, SYED U, et al. Blended yarn analysis:Part I-influence of blend ratio and break draft on mass variation,hairiness,and physical properties of 15 tex PES/CO blended ring-spun yarn[J]. Journal of Natural Fibers, 2012, 9(3):197-206.
DOI
URL
|
[3] |
SELVANAYAKI M, VIJAVA M S, JAMUNA K S, et al. An interactive tool for yarn strength prediction using support vector regression[C]// Proceedings of the 2nd International Conference on Machine Learning and Computing(ICMLC 2010),Bangalore, India, IEEE, 2010:335-339.
|
[4] |
MOKHTAR S, BEN A S, SAKLI F. Optimization of textile parameters of plain woven vascular prostheses[J]. Journal of the Textile Institute, 2010, 101(12):1095-1105.
DOI
URL
|
[5] |
张羽彤, 沈卓尔, 代利花, 等. 小规模样本精梳毛纺纱线质量预测[J]. 毛纺科技, 2020, 48(12):1-5.
|
|
ZHANG Yutong, SHEN Zhuo'er, DAI Lihua, et al. Prediction of worsted yarn quality with small-scale samples[J]. Wool Textile Journal, 2020, 48(12):1-5.
|
[6] |
查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(1):52-56,61.
|
|
ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network[J]. Journal of Textile Research, 2019, 40(1):52-56, 61.
|
[7] |
李惠军, 朱磊. 基于BP人工神经网络的纱线毛羽预测研究[J]. 棉纺织技术, 2011, 39(1):32-34.
|
|
LI Huijun, ZHU Lei. Research of yarn hairiness forecast based on BP artificial neural network[J]. Cotton Textile Technology, 2011, 39(1):32-34.
|
[8] |
邢鹏程. 基于Hadoop大数据平台的纺纱质量预测系统的研究与应用[D]. 上海:东华大学, 2018.
|
|
XING Pengcheng. Research and Application of Spinning Quality Prediction System Using the Big Data Platform of Hadoop[D]. Shanghai: Donghua University, 2018.
|
[9] |
杨建国, 熊经纬, 徐兰, 等. 基于改进极限学习机的纱线质量预测[J]. 东华大学学报(自然科学版), 2015, 41(4):494-497,508.
|
|
YANG Jianguo, XIONG Jingwei, XU Lan, et al. Yarn quality prediction based on improved extreme learning machine[J]. Journal of Donghua University (Natural Science), 2015, 41(4):494-497, 508.
|
[10] |
袁利华. 基于HVI指标与RBF神经网络的纱线质量预测[J]. 丝绸, 2014, 51(11):17-21.
|
|
YUAN Lihua. Yarn quality prediction based on HVI indicator and RBF neural network[J]. Journal of Silk, 2014, 51(11):17-21.
|
[11] |
MOHAMED N, SAMAR A E. Prediction of some cotton fiber blends properties using regression models[J]. Alexandria Engineering Journal, 2008, 47(2):1 47-153.
|
[12] |
袁汝旺. 纱线条干均匀度检测方法基础研究[D]. 天津:天津工业大学, 2014.
|
|
YUAN Ruwang. Basic Research on the Detection Method of Yarn Evenness[D]. Tianjin: Tianjin Polytechnic University, 2014.
|
[13] |
程立超. 基于线阵CCD的纱线条干不匀检测与评价[D]. 天津:天津工业大学, 2014.
|
|
CHENG Lichao. Detection and Evaluation of Yarn Unevenness Based on Linear CCD[D]. Tianjin: Tianjin Polytechnic University, 2014.
|
[14] |
董清利. 时间序列组合预测模型的建立与应用研究[D]. 大连:东北财经大学, 2019.
|
|
DONG Qingli. Research on the Establishment and Application of Time Series Combination Forecasting Model[D]. Dalian: Dongbei University of Finance and Economics, 2019.
|
[15] |
陈一鸣. 基于卡尔曼滤波的陀螺仪随机误差分析[J]. 电子测量技术, 2020, 43(17):97-100.
|
|
CHEN Yiming. Analysis of gyro random error based on Kalman filter[J]. Electronic Measurement Technology, 2020, 43(17):97-100.
|
[16] |
郑培, 于立军, 侯胜亚, 等. 基于卡尔曼滤波修正的多步风电功率预测[J]. 热能动力工程, 2020, 35(4):235-241.
|
|
ZHENG Pei, YU Lijun, HOU Shengya, et al. Multi-step wind power forecasting based on Kalman filter modification[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4):235-241.
|
[17] |
邓自立. 最优估计理论及其应用:建模、滤波、信息融合估计[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005.
|
|
DENG Zili. Optimal Estimation Theory and Its Application: Modeling, Filtering and Information Fusion Estimation[M]. Harbin: Harbin Institute of Technology Press, 2005.
|
[18] |
程建华, 洪文. 统计学原理与应用[M]. 北京: 人民邮电出版社, 2013: 264.
|
|
CHENG Jianhua, HONG Wen. Principles and Applications of Statistics[M]. Beijing: People's Posts and Telecommunications Press, 2013: 264.
|