现代纺织技术 ›› 2023, Vol. 31 ›› Issue (1): 13-27.DOI: 10.19398/j.att.202208029
张惠蓉1, 夏兆鹏1, 陈浩2, 潘佳俊1, 王涛1, 刘晓辰1
收稿日期:
2022-08-16
出版日期:
2023-01-10
网络出版日期:
2023-01-17
通讯作者:
夏兆鹏,E-mail:xia_zhaopeng@163.com
作者简介:
张惠蓉(1998—),女,贵州贵阳人,硕士研究生,主要从事智能电加热服饰方面的研究。
基金资助:
ZHANG Huirong1, XIA Zhaopeng1, CHEN Hao2, PAN Jiajun1, WANG Tao1, LIU Xiaochen1
Received:
2022-08-16
Published:
2023-01-10
Online:
2023-01-17
摘要: 可穿戴电加热元件在人体热舒适调节领域具有重要意义。电加热材料的研究与发展,促使电加热元件的加热性能得到不断提升,功能实现多样化。目前可穿戴电加热元件的研究除材料性能研究外,缺少研究元件与实际应用需求间的差距分析。为分析目前可穿戴电加热元件的可靠性及发展趋势,对不同材料的一维线性、二维平面及三维气凝胶状元件的制备工艺、性能、有害物质引入途径进行了讨论,发现先进的可穿戴电加热元件距离成熟的产品应用仍存在制备成本高、不耐水洗、柔性差、不透气及有害物质残留等问题。可穿戴电加热元件研究涉及材料选择、工艺制备、人体服用舒适性,但实际使用的可靠性,如元件的柔性、透气性、安全性及耐用性易在研究中被忽视。先进的可穿戴电加热元件满足使用需求的潜在解决方案为:综合应用不同材料以节约成本,优化制备工艺避免有害物质的残留,改进元件结构以提高其可靠性。
中图分类号:
张惠蓉, 夏兆鹏, 陈浩, 潘佳俊, 王涛, 刘晓辰. 可穿戴电加热元件的制备及可靠性[J]. 现代纺织技术, 2023, 31(1): 13-27.
ZHANG Huirong, XIA Zhaopeng, CHEN Hao, PAN Jiajun, WANG Tao, LIU Xiaochen. Preparation and reliability of wearable electric heating elements[J]. Advanced Textile Technology, 2023, 31(1): 13-27.
[1] FANG S, WANG R, NI H S, et al. A review of flexible electric heating element and electric heating garments[J]. Journal of Industrial Textiles, 2022,51(S):101-136. [2] YEN R H, CHEN C Y, HUANG C T, et al. Numerical study of anisotropic thermal conductivity fabrics with heating elements[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2013,23(5): 750-771. [3] PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020,4(4): 724-742. [4] KIM K, REID B A, CASEY C A, et al. Effects of repeated local heat therapy on skeletal muscle structure and function in humans[J]. Journal of Applied Physiology, 2020,128(3): 483-492. [5] HYLDAHL R D, PEAKE J M. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations[J]. Journal of Applied Physiology, 2020,129(2): 353-365. [6] SONG W F, LU Y H, LIU Y P, et al. Effect of partial-body heating on thermal comfort and sleep quality of young female adults in a cold indoor environment[J]. Building and Environment, 2020,169: 106585. [7] 李萍,蒋晓文.智能电加热服的研究进展[J].棉纺织技术,2019,47(9):79-84. LI Ping, JIANG Xiaowen. Research progress of intelligent electric heating clothing[J]. Cotton Textile Technology, 2019, 47(9): 79-84. [8] BAI Y Y, LI H X, GAN S J, et al. Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics[J]. Measurement, 2018,122: 192-200. [9] SHYR T W, SHIE J W. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles[J]. Journal of Magnetism and Magnetic Materials, 2012,324(23): 4127-4132. [10] KAYACAN O, BULGUN E, SAHIN O. Implementation of steel-based fabric panels in a heated garment design[J]. Textile Research Journal, 2009,79(16): 1427-1437. [11] ZHAO W L, ZHENG Y Q, QIAN J N, et al. Agnws/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding[J]. Journal of Alloys and Compounds, 2022,923: 166471. [12] HONG X H, PENG T, ZHU C Y, et al. Electromagnetic shielding, resistance temperature-sensitive behavior, and decoupling of interfacial electricity for reduced graphene oxide paper[J]. Journal of Alloys and Compounds, 2021,882: 160756. [13] 虞茹芳,洪兴华,祝成炎,等.还原氧化石墨烯涂层织物的电加热性能[J].纺织学报,2021,42(10):126-131. YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021,42(10): 126-131. [14] SONG P, WANG G, ZHANG Y. Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors[J]. Sensors and Actuators A: Physical, 2021,323: 112659. [15] PHILIP B, JEWELL E, GREENWOOD P, et al. Material and process optimization screen printing carbon graphite pastes for mass production of heating elements[J]. Journal of Manufacturing Processes, 2016,22: 185-191. [16] SUI D, HUANG Y, HUANG L, et al. Flexible and transparent electrothermal film heaters based on graphene materials[J]. Small, 2011,7(22): 3186-3192. [17] CLAYPOLE A, CLAYPOLE J, BEZODIS N, et al. Printed nanocarbon heaters for stretchable sport and leisure garments[J]. Materials, 2022,15(2): 573. [18] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science (New York), 2021,372(6547): e1581. [19] SAIDI A, GAUVIN C, LADHARI S, et al. Advanced functional materials for intelligent thermoregulation in personal protective equipment[J]. Polymers, 2021,13(21): 3711. [20] SUN K X, SU L, LONG H R. Structural parameters affecting electrothermal properties of woolen knitted fabrics integrated with silver-coated yarns[J]. Polymers, 2019,11(10): 1709. [21] HAMDANI S T A, POTLURI P, FERNANDO A. Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn[J]. Materials, 2013,6(3): 1072-1089. [22] LIU H, LI J, CHEN L, et al. Thermal-electronic behaviors investigation of knitted heating fabrics based on silver plating compound yarns[J]. Textile Research Journal, 2016,86(13): 1398-1412. [23] LIU H, WANG X, LI J, et al. Fabrication and characterization of nano-SiC/thermoplastic polyurethane hybrid heating membranes based on fine silver filaments[J]. Journal of Applied Polymer Science, 2015,132(8): 41498. [24] NOTINGHER P V, PANAITESCUA D, PAVENA H, et al. Some characteristics of conductive polymer composites containing stainless steel fibers[J]. Journal of Optoelec-tronics and Advanced Materials, 2004, 6: 1081-1084. [25] KIM J H, KIM K S, JANG K R, et al. Enhancing adhesion of screen-printed silver nanopaste films[J]. Advanced Materials Interfaces, 2015,2(13): 1500283. [26] FANG S, WANG R, NI H S, et al. Thermal field distribution investigation and simulation of silver paste heating fabric by screen printing based on joule heating effect[J]. Journal of Materials Science: Materials in Electronics, 2021,32(23): 27762-27776. [27] ASHAYER-SOLTANI R, HUNT C, THOMAS O. Fabrication of highly conductive stretchable textile with silver nanoparticles[J]. Textile Research Journal, 2016,86(10): 1041-1049. [28] HSU P C, LIU X G, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015,15(1): 365-371. [29] AN H J, SARKHEIL M, PARK H S, et al. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019,218: 62-69. [30] INEZ E D M, FLORES A I F G, PASRTORIZA H, et al. Electrothermal silver nanowire thin films for In-Situ observation of thermally-driven chemical processes[J]. Sensors and Actuators B, 2018,259: 475-483. [31] LI M Z, LI Z Y, WANG J, et al. Screen printed silver patterns on functionalised aramid fabric[J]. Fibers and Polymers, 2017,18(10): 1975-1980. [32] KIM H, KIM H S, LEE S. Thermal insulation property of graphene/polymer coated textile based multi-layer fabric heating element with aramid fabric[J]. Scientific Reports, 2020,10: 17586. [33] LEE S, JANG D, CHUNG Y S, et al. Cost-effective and highly efficient surface heating elements using high thermal conductive carbon fibers[J]. Composites Part A: Applied Science and Manufacturing, 2020,137: 105992. [34] HAN W D, QIAN X, MA H B, et al. Effect of nickel electroplating followed by a further copper electroplating on the micro-structure and mechanical properties of high modulus carbon fibers[J]. Materials Today Communi-cations, 2021,27: 102345. [35] WANG R, XU Z, ZHUANG J H, et al. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters[J]. Advanced Electronic Materials, 2017,3(2): 1600425. [36] TANG P P, DENG Z M, ZHANG Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor[J]. Advanced Functional Materials, 2022,32(28): 2112156. [37] LIU P, LI Y, XU Y, et al. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure[J]. Small, 2018,14(4): 1702926. [38] CHOI D, KIL H S, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon, 2019,142: 610-649. [39] TUGIRUMUBANO A, JEONG H, KIM J D, et al. Reliability evaluation of the performance of non-woven carbon fiber fabric for heating element applications[J]. Journal of Materials Research and Technology, 2021,14: 2140-2149. [40] KIM H, LEE S, KIM H. Electrical heating performance of electro-conductive Para-aramid knit manufactured by dip-coating in a graphene/waterborne polyurethane composite[J]. Scientific Reports, 2019,9: 1511. [41] ILANCHEZHIYAN P, ZAKIROVA A S, KUMARA G M, et al. Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications[J]. RSC Advances, 2015, 5(14): 10697-10702. [42] YANG B, DING X Y, ZHANG M Y, et al. Scalable electric heating paper based on CNT/Aramid fiber with superior mechanical and electric heating properties[J]. Composites Part B: Engineering, 2021,224: 109242. [43] YU Q, WENG P X, HAN L, et al. Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning[J]. Cellulose, 2019,26(12): 7523-7535. [44] LI X S, CAI W W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009,324(5932): 1312-1314. [45] LEÓN V, RODRIGUEZ A M, PRIETO P, et al. Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions[J]. ACS Nano, 2014,8(1): 563-571. [46] LI C, XU Y T, ZHAO B, et al. Flexible graphene electrothermal films made from electrochemically exfoliated graphite[J]. Journal of Materials Science, 2016,51(2): 1043-1051. [47] NIKOLAEV D V, EVSEEV Z I, SMAGULOVA S A, et al. Electrical properties of textiles treated with graphene oxide suspension[J]. Materials, 2021,14(8): 1999. [48] HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020,14(1): 688-697. [49] ZENG Z H, JIN H, CHEN M J, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials, 2016,26(2): 303-310. [50] OPWIS K, KNITTEL D, GUTMANN J S. Oxidative in situ deposition of conductive PEDOT:PTSA on textile substrates and their application as textile heating element[J]. Synthetic Metals, 2012,162(21/22): 1912-1918. [51] BALINT R, CASSIDY N J, CARTMELL S H. Conductive polymers: Towards a smart biomaterial for tissue engineering[J]. Acta Biomaterialia, 2014,10(6): 2341-2353. [52] HAO D D, XU B, CAI Z S. Polypyrrole coated knitted fabric for robust wearable sensor and heater[J]. Journal of Materials Science: Materials in Electronics, 2018,29(11): 9218-9226. [53] WANG Y T, CHEN L Y, CHENG H, et al. Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management[J]. Chemical Engineering Journal, 2020,402: 126222. [54] PRUNET G, PAWULA F, FLEURY G, et al. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications[J]. Materials Today Physics, 2021,18: 100402. [55] ABAD B, ALDA I, DIAZ-CHAO P, et al. Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs)[J]. Journal of Materials Chemistry A, 2013,1(35): 10450. [56] MORAES M R, ALVES A C, TOPTAN F, et al. Glycerol/PEDOT:PSS coated woven fabric as a flexible heating element on textiles[J]. Journal of Materials Chemistry C, 2017,5(15): 3807-3822. [57] ȦKERFELDT M, STRȦȦT M, WALKENSTRÖM P. Electrically conductive textile coating with a PEDOT:PSS dispersion and a polyurethane binder[J]. Textile Research Journal, 2013,83(6): 618-627. [58] 林思伶,李龙,吴磊,等.导电腈纶纱的导电性及其织物的电热性能研究[J].棉纺织技术,2021,49(11):21-25. LIN Siling, LI Long, WU Lei, et al. Study on electrical conductivity of conducting acrylic yarn and its fabric electrothermal property[J]Cotton Textile Technology, 2021,49(11): 21-25. [59] CAI G F, CIOU J H, LIU Y Z, et al. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices[J]. Science Advances, 2019,5(7): 7956. [60] SONG P, LIU B, QIU H, et al. MXenes for polymer matrix electromagnetic interference shielding composites: A review[J]. Composites Communications, 2021,24:100653. [61] ZHENG X H, WANG P, ZHANG X S, et al. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy[J]. Composites Part A: Applied Science and Manufacturing, 2022,152: 106700. [62] XIN W, MA M G, CHEN F. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2021,4(7): 7234-7243. [63] JIANG D G, ZHANG J Z, QIN S, et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices[J]. ACS Nano, 2021,15(3): 5000-5010. [64] ROVIRA J, NADAL M, SCHUHMACHER M, et al. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment[J]. Environmental Research, 2015,140: 308-316. [65] ODUKUDU F B, AYENIMO J G, ADEKUNLE A S, et al. Safety evaluation of heavy metals exposure from consumer products[J]. International Journal of Consumer Studies, 2014,38(1): 25-34. [66] BRÜSCHWEILER B J, MERLOT C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet[J]. Regulatory Toxicology and Pharmacology, 2017,88: 214-226. [67] KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors[J]. Toxicology, 2013,314(1): 76-83. [68] HUANG J N, LI Y R, XU Z J, et al. An integrated smart heating control system based on sandwich-structural textiles[J]. Nanotechnology, 2019,30(32): 325203. [69] POLANSKY R, SOUKUP R, REBOUN J, et al. A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread[J]. Sensors and Actuators A, 2017,265: 111-119. [70] ZHENG X, NIE W, HU Q, et al. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection[J]. Materials & Design, 2021,200: 109442. [71] ESPOSITO CORCIONE C, FERRARI F, STRIANI R, et al. Transport properties of natural and artificial smart fabrics impregnated by graphite nanomaterial stacks[J]. Nanomaterials, 2021,11(4): 1018. [72] CHENG N, ZHANG L, KIM J, et al. Vapor phase organic chemistry to deposit conjugated polymer films on arbitrary substrates[J]. Journal of Materials Chemistry C, 2017,5(23): 5787-5796. [73] LI Z, HULDERMAN T, SALMEN R, et al. Cardiovas-cular effects of pulmonary exposure to single-wall carbon nanotubes[J]. Environmental Health Perspectives, 2007,115(3): 377-382. [74] FU P P, XIA Q S, HWANG H M, et al. Mechanisms of nanotoxicity: generation of reactive oxygen species[J]. Journal of Food and Drug Analysis, 2014,22(1): 64-75. [75] DAVIDE F. Neurophysiology of skin thermal sensations[J]. Comprehensive Physiology, 2016,6(3): 1429. [76] WANG Y W, BEEKMAN J, HEW J, et al. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring[J]. Advanced Drug Delivery Reviews, 2018,123: 3-17. [77] LIU H, LIAO J K, YANG D, et al. The response of human thermal perception and skin temperature to step-change transient thermal environments[J]. Building and Environment, 2014,73: 232-238. [78] LOU L, CHEN K K, FAN J T. Advanced materials for personal thermal and moisture management of health care workers wearing PPE[J]. Materials Science and Engineering: R: Reports, 2021,146: 100639. [79] FU K, YANG Z, PEI Y, et al. Designing textile architectures for high energy-efficiency human body sweat-and cooling-management[J]. Advanced Fiber Materials, 2019,1(1): 61-70. [80] RUIZ-CALLEJA T, CALDERóN-VILLAJOS R, BONET-ARACIL M, et al. Thermoelectrical properties of graphene knife-coated cellulosic fabrics for defect monitoring in joule-heated textiles[J]. Journal of Industrial Textiles, 2022,51(S):8884-8905. [81] 沈悦明,张雪青,李璇.电加热服装质量风险调查分析[J].中国纤检,2019(2):32-35. SHEN Yueming, ZHANG Xueqing, LI Xuan. Investigation and analysis on quality risk of electric heating clothing[J]. China Fiber Inspection. 2019(2): 32-35. [82] LIU S, FU S J, WU J, et al. Development and charac-terization of electrical heating garment based on the weft knitted jacquard pattern for back pain disease[J]. Journal of the Textile Institute, 2022,113(11): 2428-2434. [83] HAO Y N, TIAN M W, ZHAO H T, et al. High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route[J]. Industrial & Engineering Chemistry Research, 2018,57(40): 13437-13448. [84] ARAPOV K, RUBINGH E, ABBEL R, et al. Conductive screen printing inks by gelation of graphene dispersions[J]. Advanced Functional Materials, 2016,26(4): 586-593. [85] KIM H, LEE S, KIM H. Electrical heating performance of electro-conductive para-aramid knit manufactured by dip-coating in a graphene/waterborne polyurethane composite[J]. Scientific Reports, 2019,9: 1511. [86] LUO J, LU H F, ZHANG Q C, et al. Flexible carbon nanotube/polyurethane electrothermal films[J]. Carbon, 2016,110: 343-349. |
[1] | 尹云雷, 郭成, 杨红英, 李虹, 王政. 电子织物在智能可穿戴领域的研究进展[J]. 现代纺织技术, 2023, 31(1): 1-12. |
[2] | 梁嘉文, 李婷婷, 严占林, 张斌, 曹重阳, 傅智芳, 陈乃超. 可穿戴设备的能源供给研究进展[J]. 现代纺织技术, 2023, 31(1): 28-39. |
[3] | 朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. |
[4] | 张赢心, 徐磊, 王大伟, 李楠, 杨云飞. 织物电极在生物电信号监测中的研究进展[J]. 现代纺织技术, 2022, 30(4): 42-49. |
[5] | 计瑜, 刘元军, 赵晓明, 侯硕. 电磁屏蔽织物的研究现状[J]. 现代纺织技术, 2022, 30(3): 1-12. |
[6] | 严小飞, 方杰, 朱晨凯, 李家炜, 祝成炎, 戚栋明. 二维材料MXene(Ti3C2Tx)的制备、性能及其在纺织领域中的应用[J]. 现代纺织技术, 2022, 30(2): 1-8. |
[7] | 刘凡,赵晓明,郑煜昊,赵润德. 导电聚合物/磁性粒子复合吸波材料的研究进展[J]. 现代纺织技术, 2021, 0(6): 7-18. |
[8] | 马美静,刘丽妍,高新华,刘皓. 基于新型材料的柔性生物电干电极的研究进展[J]. 现代纺织技术, 2021, 0(4): 18-26. |
[9] | 姜茂欣,鲁虹,黄婉蓉,李鑫鑫. 基于LilyPad Arduino的宠物狗智能夜行服研发[J]. 现代纺织技术, 2021, 0(3): 65-70. |
[10] | 王垚a,王跃丹a,朱如枫b,王栋. 纤维基有机电化学晶体管研究进展[J]. 现代纺织技术, 2020, 0(5): 21-33. |
[11] | 刘津池,于淼,王侠. 摩擦纳米发电机在织物基智能可穿戴中的应用[J]. 现代纺织技术, 2020, 0(4): 53-63. |
[12] | 吉庭婷,徐旭松,范真,李京,张伟. 细纱机锭子优化设计及可靠性分析[J]. 现代纺织技术, 2017, 0(05): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||