[1] KWAK S S, YOON H J, KIM S W. Textile-based triboelec-tric nanogenerators for self-powered wearable electronics[J]. Advanced Functional Materials, 2019,29(2):1804533. [2] FAN F R, TIAN Z Q, WANGZ L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. [3] WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11): 9533-9557. [4] CHEN G, LI Y, BICK M, et al. Smart textiles for elec-tricity generation[J]. Chemical Reviews, 2020, 120(8): 3668-3720. [5] 张高晶,王冰心,田明伟.电子纺织品在智能可穿戴领域的研究进展[J].染整技术,2021,43(4):18-24. ZHANG Gaojing, WANG Bingxin, TIAN Mingwei. Research progress of electronic textiles in the smart wearable field[J]. Textile Dyeing and Finishing Journal, 2021, 43(4): 18-24. [6] NING C, TIAN L, ZHAO X, et al. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics[J]. Journal of Materials Chemistry A, 2018, 6(39): 19143-19150. [7] ZHOU T, ZHANG C, HAN C B, et al. Woven structured triboelectric nanogenerator for wearable devices[J]. ACS Applied Materials & Interfaces, 2014,6(16):14695-14701. [8] KWAK S S, KIM H, SEUNG W, et al. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures[J]. ACS Nano, 2017, 11(11): 10733-10741. [9] YOKUS M A, JUR J S. Fabric-based wearable dry electrodes for body surface biopotential recording[J]. IEEE Transactions on Bio-medical Engineering, 2016, 63(2): 423-430. [10] DOGANAY D, COSKUN S, GENLIK S P, et al. Silver nanowire decorated heatable textiles[J]. Nanotechnology, 2016, 27(43): 435201. [11] ZHONG J, ZHANG Y, ZHONG Q, et al. Fiber-based generator for wearable electronics and mobile medication[J]. ACS Nano, 2014, 8(6): 6273-6280. [12] SAHITO I, SUN K C, ARBAB A A, et al. Graphene coated cotton fabric as textile structured counter electrode for DSSC[J]. Electrochimica Acta, 2015, 173: 164-171. [13] HE T, SHI Q, WANG H, et al. Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile[J]. Nano Energy, 2019, 57: 338-352. [14] SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) X[J]. Journal of the Chemical Society, Chemical Communications, 1977, 16: 578-580. [15] STEMPIEN Z, RYBICKI T, RYBICKI E, et al. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique[J]. Synthetic Metals, 2015, 202: 49-62. [16] 马飞祥,丁晨,凌忠文,等.导电织物制备方法及应用研究进展[J].材料导报,2020,34(1):1114-1125. MA Feixiang, DING Chen, LING Zhongwen, et al. Research progress on preparation and application of conductive fabrics[J]. Materials Reports, 2020, 34(1): 1114-1125. [17] SHAHIDI S, MOAZZENCHI B, GHORANNEVISS M. A review-application of physical vapor deposition (PVD) and related methods in the textile industry[J]. The European Physical Journal Applied Physics, 2015, 71(3): 31302. [18] GRODZICKI A, ŁAKOMSKA I, PISZCZEK P, et al. Copper (I), silver (I) and gold (I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films[J]. Coordination Chemistry Reviews, 2005, 249(21/ 22): 2232-2258. [19] KO Y, PARK J, MO J, et al. Layer-by-layer assembly-based electrocatalytic fibril electrodes enabling extremely low overpotentials and stable operation at 1 A cm-2 in water-splitting reaction[J]. Advanced Functional Materials, 2021, 31(35): 2102530. [20] GUO R H, JIANG S X, YUEN C W M, et al. Influence of deposition parameters and kinetics of electroless Ni-P plating on polyester fiber[J]. Fibers and Polymers, 2012, 13(8): 1037-1043. [21] SANO M, TAHARA Y, CHANG T F M, et al. Metallization of textile by Pt catalyzation in supercritical carbon dioxide and Pt electroless plating for applications in wearable devise[J]. Microelectronic Engineering, 2016, 153: 92-95. [22] AZAR G, FOX D, FEDUTIK Y, et al. Functio-nalised copper nanoparticle catalysts for electroless copper plating on textiles[J]. Surface and Coatings Technology, 2020, 396: 125971. [23] DE Juan F, CORTIJO A, VOZMEDIANO M A H, et al. Aharonov-bohm interferences from local deformations in graphene[J]. Nature Physics, 2011, 7(10): 810-815. [24] ZHANG L, FAIRBANKS M, ANDREW T L. Rugged textile electrodes for wearable devices obtained by vapor coating off-the-shelf, plain-woven fabrics[J]. Advanced Functional Materials, 2017, 27(24): 1700415. [25] 胡昌义,戴姣燕,陈松,等.贵金属化学气相沉积的研究进展[J].贵金属,2005,26(2):57-63. HU Changyi, DAI Jiaoyan, CHEN Song, et al. Progress of chemical vapor deposition of precious metals[J]. Precious Metals, 2005, 26(2): 57-63. [26] 高华, 马虎. 化学气相沉积法制备石墨烯的最新研究进展[J]. 广东化工, 2018, 45(21): 52-53. GAO Hua, MA Hu. Recent advances in the preparation of graphene by chemical vapor deposition[J]. Guangdong Chemical Industry, 2018, 45(21): 52-53. [27] CHANDRASHEKAR B N, DENG B, SMITHA A S, et al. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator[J]. Advanced Materials, 2015, 27(35): 5210-5216. [28] KIM S, GUPTA M K, LEE K Y, et al. Transparent flexible graphene triboelectric nanogenerators[J]. Advanced Materials, 2014, 26(23): 3918-3925. [29] JIN Y, KA D, JANG S, et al. Fabrication of graphene based durable intelligent personal protective clothing for conventional and non-conventional chemical threats[J]. Nanomaterials, 2021, 11(4): 940. [30] QIU Y, YANG D, LI B, et al. Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy[J]. RSC Advances, 2018, 8(46): 26243-26250. [31] DUDEM B, KIM D H, YU J S. Triboelectric nanogene-rators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy[J]. Nano Research, 2018, 11(1): 101-113. [32] ALI A, BAHETI V, MILITKY J. Energy harvesting performance of silver electroplated fabrics[J]. Materials Chemistry and Physics, 2019, 231: 33-40. [33] PU X, LI L, SONG H, et al.A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics[J]. Advanced Materials, 2015, 27(15): 2472-2478. [34] PU X, SONG W, LIU M, et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells[J]. Advanced Energy Materials, 2016, 6(20): 1601048. [35] WANG Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives[J]. Faraday Discussions, 2014, 176: 447-458. [36] CHOI A Y, LEE C J, PARK J, et al. Corrugated textile based triboelectric generator for wearable energy harvesting[J]. Scientific Reports, 2017, 7: 45583. [37] HE T, SHI Q, WANG H, et al. Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile[J]. Nano Energy, 2019, 57: 338-352. [38] LIN Z, YANG J, LI X, et al. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring[J]. Advanced Functional Materials, 2018, 28(1): 1704112. [39] ZHANG Y, HU H, KVOSEV Y, et al. Finite element modeling of 3D spacer fabric:Effect of the geometric variation and amount of spacer yarns[J]. Composite Structures, 2020, 236: 111846. [40] LIU L, PAN J, CHEN P, et al. A triboelectric textile templated by a three-dimensionally penetrated fabric[J]. Journal of Materials Chemistry A, 2016, 4(16): 6077-6083. [41] ZHU M, HUANG Y, NG W S, et al. 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production[J]. Nano Energy, 2016, 27: 439-446. [42] GONG J, XU B, GUAN X, et al. Towards truly wearable energy harvesters with full structural integrity of fiber materials[J]. Nano Energy, 2019, 58: 365-374. [43] JING T, XU B, XIN J H, et al. Series to parallel structure of electrode fiber: An effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles[J]. Journal of Materials Chemistry A, 2021, 9(20): 12331-12339. [44] 刘津池,于淼,王侠.摩擦纳米发电机在织物基智能可穿戴中的应用[J].现代纺织技术,2020,28(4):53-63. LIU Jinchi, YU Miao, WANG Xia. Application of triboe-lectric nanogenerators in fabric-basedintelligent wearable devices[J]. Advanced Textile Technology, 2020, 28(4): 53-63. [45] PAOSANGTHONG W, TORAH R, BEEBY S. Recent progress on textile-based triboelectric nanogenerators[J]. Nano Energy, 2019, 55: 401-423. [46] Dharmasena R D I G, Jayawardena K D G I, Mills C A, et al. Triboelectric nanogenerators: Providing a funda-mental framework[J]. Energy & Environmental Science, 2017, 10(8): 1801-1811. [47] CUI N, GU L, LEI Y, et al. Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator[J]. ACS Nano, 2016, 10(6): 6131-6138. [48] LI Z, ZHU M, QIU Q, et al. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting[J]. Nano Energy, 2018, 53: 726-733. [49] DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelli-gence[J]. Advanced Materials, 2020, 32(5): 1902549. [50] DONG K, HU Y, YANG J, et al. Smart textile triboelectric nanogenerators: Current status and pers-pectives[J]. MRS Bulletin, 2021, 46(6): 512-521. [51] ZHAO Z, YAN C, LIU Z, et al. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns[J]. Advanced Materials, 2016, 28(46): 10267-10274. [52] HUANG T, ZHANG J, YU B, et al. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power[J]. Nano Energy, 2019, 58: 375-383. [53] YU B, YU H, HUANG T, et al. A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density[J]. Nano Energy, 2018, 48: 464-470. |