现代纺织技术 ›› 2022, Vol. 30 ›› Issue (1): 18-25.DOI: 10.19398/j.att.202104011
收稿日期:
2021-04-06
出版日期:
2022-01-10
网络出版日期:
2021-07-08
通讯作者:
杨允出,E-mail: gary0577@zstu.edu.cn作者简介:
李金屿(1998-),女,河南周口人,硕士研究生,主要从事服装热舒适性能方面的研究。
基金资助:
LI Jinyua, YANG Yunchub,c(), LIU Mingminga
Received:
2021-04-06
Published:
2022-01-10
Online:
2021-07-08
摘要:
为了预测织物热传递性能,更好地进行织物设计,从而提高织物的热舒适性能,从不同建模方法的角度介绍了与织物结构参数及内部特征相关的织物热传递性能预测模型,包括统计模型、人工神经网络模型、数学理论模型和有限元模型,并分析了各类预测模型的特点和适用范围。回顾并总结了近年来国内外织物传热模拟的研究现状。此外,总结了含水分织物以及含相变材料织物的热传递模型及研究进展。综合以上文献分析,指出可通过优化织物结构特征提升织物热传递性能,并提出织物传热性能预测研究的发展趋势,为服装热舒适性研究提供新的思路。
中图分类号:
李金屿, 杨允出, 刘鸣茗. 基于结构特征的织物热传递性能预测研究进展[J]. 现代纺织技术, 2022, 30(1): 18-25.
LI Jinyu, YANG Yunchu, LIU Mingming. Research progress in the prediction of heat transfer properties of fabrics based on structural characteristics[J]. Advanced Textile Technology, 2022, 30(1): 18-25.
数学理论模型来源 | 相同点 | 不同点 | 适用范围 |
---|---|---|---|
文献[6]、[16]-[20] | 均基于串-并联原理 | 仅考虑纤维和空气体积占比的 织物结构特征 | 适用于简单结构的 织物热导率计算 |
文献[21]、[22] | 考虑多组分复合材料 | 适用于求解复合材料 织物的热导率 | |
文献[23]、[24] | 考虑织物微观结构参数,且 文献[23]考虑辐射换热 | 适用于根据纤维或纱线结构 参数计算织物热阻 |
表1 不同数学理论模型的特性对比
Tab.1 Comparison of characteristics of different mathematical theoretical models
数学理论模型来源 | 相同点 | 不同点 | 适用范围 |
---|---|---|---|
文献[6]、[16]-[20] | 均基于串-并联原理 | 仅考虑纤维和空气体积占比的 织物结构特征 | 适用于简单结构的 织物热导率计算 |
文献[21]、[22] | 考虑多组分复合材料 | 适用于求解复合材料 织物的热导率 | |
文献[23]、[24] | 考虑织物微观结构参数,且 文献[23]考虑辐射换热 | 适用于根据纤维或纱线结构 参数计算织物热阻 |
[1] | 王丹, 王东晓, 丁一凡, 等. 织物特性对热湿传递性能的影响[J]. 轻纺工业与技术, 2020, 49(11):17-18. |
WANG Dan, WANG Dongxiao, DING Yifan, et al. Influence of fabric property on its thermal and moisture transfer performances[J]. Light and Textile Industry and Technology, 2020, 49(11): 17-18. | |
[2] | 高帅, 庞方丽. 针织物组织结构对其热传递性能的影响[J]. 山东纺织科技, 2020, 61(5):9-10. |
GAO Shuai, PANG Fangli. The influence of knitted fabric structure on its heat transfer performance[J]. Shandong Textile Science & Technology, 2020, 61(5): 9-10. | |
[3] | 刘让同, 刘淑萍, 李亮, 等. 织物结构对机织物热传导的影响[J]. 上海纺织科技, 2017, 45(6):4-7. |
LIU Rangtong, LIU Shuping, LI Liang, et al. Effect of fabric structure on heat conduction of woven fabrics[J]. Shanghai Textile Science & Technology, 2017, 45(6): 4-7. | |
[4] | 张鹤誉, 郑振荣, 赵晓明, 等. 玻璃纤维交织织物的热传递数值模拟[J]. 纺织学报, 2015, 36(3):28-31,42. |
ZHANG Heyu, ZHENG Zhenrong, ZHAO Xiaoming, et al. Numerical simulation of heat transfer on glass fiber woven fabric[J]. Journal of Textile Research, 2015, 36(3): 28-31,42. | |
[5] | 郑振荣, 张玉双, 王红梅, 等. 基于纱线交织结构的织物传热模拟方法[J]. 工程热物理学报, 2016, 37(9):1918-1925. |
ZHENG Zhenrong, ZHANG Yushuang, WANG Hongmei, et al. A numerical simulation on heat transfer of fabric based on the yarn interweaved structure[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1918-1925. | |
[6] | 蔡彦, 杨允出, 钱江瑞. 基于结构参数的机织物等效热导率数学建模[J]. 现代纺织技术, 2021, 29(2):43-49. |
CAI Yan, YANG Yunchu, QIAN Jiangrui. Conductivity of woven fabrics based on structural parameters[J]. Advanced Textile Technology, 2021, 29(2): 43-49. | |
[7] | 谢璐璐, 丛杉, 谢倩. 多孔织物热湿耦合模拟研究与发展趋势[J]. 丝绸, 2014, 51(6):41-47. |
XIE Lulu, CONG Shan, XIE Qian. Simulation study on heat and moisture coupling of porous fabrics[J]. Journal of Silk, 2014, 51(6) :41-47. | |
[8] | 王红梅, 郑振荣, 张楠楠, 等. 多孔纤维织物热湿传递数值模拟的研究进展[J]. 纺织学报, 2016, 37(11):159-165. |
WANG Hongmei, ZHENG Zhenrong, ZHANG Nannan, et al. Research progress of numerical simulation on heat and moisture transfer in porous textiles[J]. Journal of Textile Research, 2016, 37(11): 159-165. | |
[9] | BHATTACHARJEE D, KOTHARI VK. Measurement of thermal resistance of woven fabrics in natural and forced convections[J]. Research Journal of Textile and Apparel, 2008, 12(2): 39-49. |
[10] |
AFZAL A, HUSSAIN T, MOHSIN M, et al. Statistical models for predicting the thermal resistance of polyester/cotton blended interlock knitted fabrics[J]. International Journal of Thermal Sciences, 2014, 85: 40-46.
DOI URL |
[11] | 崔岩, 卢昀坤, 曹雷刚, 等. 面向材料基因工程的人工神经网络研究[J]. 热加工工艺, 2018, 47(12):13-16. |
CUI Yan, LU Yunkun, CAO Leigang, et al. Research on artificial neural network for material genetic engineering[J]. Hot Working Technology, 2018, 47(12): 13-16. | |
[12] | 康靓, 米晓希, 王海莲, 等. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21):21172-21179. |
KANG Jing, MI Xiaoxi, WANG Hailian, et al. Research progress of artificial neural networks in material science[J]. Materials Reports, 2020, 34(21): 21172-21179. | |
[13] |
MAJUMDAR A. Modelling of thermal conductivity of knitted fabrics made of cotton-bamboo yarns using artificial neural network[J]. Journal of the Textile Institute, 2011, 102(9): 752-762.
DOI URL |
[14] | GUENESOGLU S, KAPLANGIRAY B. Applying the artifical neural network to predict the thermal properties of knitted fabrics[J]. Vlakna a Textile, 2019, 26(1): 41-44. |
[15] |
ALIBI H, FAYALA F, JEMNI A, et al. Modeling of thermal conductivity of stretch knitted fabrics using an optimal neural networks system[J]. Journal of Applied Sciences, 2012, 12(22): 2283-2294.
DOI URL |
[16] |
LEVY F L. A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures[J]. International Journal of Refrigeration, 1981, 4(4): 223-225.
DOI URL |
[17] |
BOGATY H, HOLLIES N R S, HARRIS M. Some Thermal Properties of Fabrics[J]. Textile Research Journal, 1957, 27(6): 445-449.
DOI URL |
[18] |
MAXWELL J C. A treatise on electricity and magnetism[J]. Nature, 1873, 7(182): 478-480.
DOI URL |
[19] | EUCKEN A. Allgemeine gesetzmigkeiten für das wrmeleitvermgen verschiedener stoffarten und aggregatzustnde[J]. Forschung Auf Dem Gebiet Des Ingenieurwesens A, 1940, 11(1):6-20. |
[20] |
HALAOUA S, ROMDHANI Z, JEMNI A. Effect of textile woven fabric parameters on its thermal properties[J]. Industria Textila, 2019, 70(1):15-20.
DOI URL |
[21] |
SEO B H, CHO Y J, YOUN J R, et al. Model for thermal conductivities in spun yarn carbon fabric composites[J]. Polymer Composites, 2005, 26(6): 791-798.
DOI URL |
[22] |
WANG J F, CARSON J K, NORTH M F, et al. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases[J]. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2389-2397.
DOI URL |
[23] |
KOTHARI V K, BHATTACHARJEE D. Prediction of thermal resistance of woven fabrics. Part I: Mathematical model[J]. Journal of the Textile Institute, 2008, 99(5): 421-432.
DOI URL |
[24] | WEI J, XU S J, LIU H, et al. Simplified model for predicting fabric thermal resistance according to its microstructural parameters[J]. Fibres & Textiles in Eastern Europe, 2015, 23(4): 57-60. |
[25] |
SIDDIQUI M O R, SUN D M. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013, 75: 45-51.
DOI URL |
[26] |
SUN Y C, CHEN X G, CHENG Z H, et al. Study of heat transfer through layers of textiles using finite element method[J]. International Journal of Clothing Science and Technology, 2010, 22(2/3): 161-173.
DOI URL |
[27] |
ZHENG Z R, ZHANG N N, ZHAO X M. Simulation of heat transfer through woven fabrics based on the fabric geometry model[J]. Thermal Science, 2018, 22: 2815-2825.
DOI URL |
[28] | 张洁, 刘新金, 谢春萍, 等. 织物结构参数对热传递性能影响的模拟分析[J]. 丝绸, 2020, 57(2):13-18. |
ZHANG Jie, LIU Xinjin, XIE Chunping, et al. Simulation analysis of the influence of fabric structure parameters on heat transfer properties[J]. Journal of Silk, 2020, 57(2): 13-18. | |
[29] | 蔡彦, 陈怡充, 严航宇, 等. 织物接触冷暖感的模拟分析[J]. 毛纺科技, 2020, 48(5):97-102. |
CAI Yan, CHEN Yichong, YAN Hangyu, et al. Simulation analysis of the contact warm-cool feeling of fabric[J]. Wool Textile Journal, 2020, 48(5): 97-102. | |
[30] |
WU J J, TANG H, WU Y X. A predictive model of thermal conductivity of plain woven fabrics[J]. Thermal Science, 2017, 21(4): 1627-1632.
DOI URL |
[31] | KANAT Z E, ÖZDIL N, MARMARALI A. Prediction of thermal resistance of the knitted fabrics in wet state by using multiple regression analysis[J]. Tekstil VeKonfeksiyon, 2014, 24(3):291-297. |
[32] | MANSOOR T, HES L, BAJZIK V. A new approach for thermal resistance prediction of different composition plain socks in wet state (Part 2)[J]. Autex Research Journal, 2020, 21(2):238-247. |
[33] |
NEVES S F, CAMPOS J B L M, MAYOR T S. Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases[J]. Applied Thermal Engineering, 2017, 117:109-121.
DOI URL |
[34] | 孙洁, 孙娜, 周建安, 等. 相变微胶囊及其功能纺织品研究进展[J]. 服装学报, 2019, 4(3):189-200. |
SUN Jie, SUN Na, ZHOU Jian'an, et al. Research and development of phase change material microcapsules and functional textiles[J]. Journal of Clothing Research, 2019, 4(3): 189-200. | |
[35] | 朱雯, 苏云, 陈若颖, 等. 相变微胶囊涂层织物在热防护服中的应用[J]. 中国安全科学学报, 2020, 30(12):180-185. |
ZHU Wen, SU Yun, CHEN Ruoying, et al. Application of fabric coated with phase change microcapsule in thermal protective clothing[J]. China Safety Science Journal, 2020, 30(12): 180-185. | |
[36] | 肖尧, 余弘, 李卫东, 等. 相变调温纺织品研究现状及评价方法[J]. 纺织检测与标准, 2019, 5(4):1-5. |
XIAO Yao, YU Hong, LI Weidong, et al. Research status and evaluation method of phase change thermostat textiles[J]. Textile Testing and Standard, 2019, 5(4): 1-5. | |
[37] | 李凤志, 朱云飞, 王鹏飞, 等. 织物-多种相变微胶囊复合材料热特性数值模拟[J]. 南京航空航天大学学报, 2009, 41(4):456-460. |
LI Fengzhi, ZHU Yunfei, WANG Pengfei, et al. Numerical simulation on thermal properties of textile with multi-type PCM microcapsules[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(4): 456-460. | |
[38] | 朱方龙. 附加相变材料层的热防护服装传热数值模拟[J]. 应用基础与工程科学学报, 2011, 19(4):635-643. |
ZHU Fanglong. Numerical simulation of heat transfer for thermal protective clothing incorporating phase change material layer[J]. Journal of Basic Science and Engineering, 2011, 19(4): 635-643. | |
[39] |
JAWORSKI M. Mathematical model of heat transfer in PCM incorporated fabrics subjected to different thermal loads[J]. Applied Thermal Engineering, 2019, 150: 506-511.
DOI URL |
[40] | 陈旭, 吴炳洋, 范滢, 等. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(7):163-168. |
CHEN Xu, WU Bingyang, FAN Ying, et al. Numerical simulation of low temperature protection process for heat storage fabrics[J]. Journal of Textile Research, 2019, 40(7): 163-168. | |
[41] |
IQBAL K, SUN D M, STYLIOS G K, et al. FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials[J]. Fibers and Polymers, 2015, 16(11):2497-2503.
DOI URL |
[1] | 刘亚琼, 李楠, 李雯, 王利君. 服装结构设计对电磁屏蔽效能的影响[J]. 现代纺织技术, 2022, 30(4): 193-199. |
[2] | 余月琳,顾学锋,吴乐元,陈慰来. 添纱衬垫织物平方米质量研究及预测模型构建[J]. 现代纺织技术, 2021, 29(6): 78-83. |
[3] | 周方颖,张素俭,王富伟,奚达新,赵钊辉. 机织物结构三维模拟软件系统的开发[J]. 现代纺织技术, 2021, 29(3): 51-56. |
[4] | 李平平,刘翰霖,李国庆,李妮. 涤纶仿麻面料的探讨[J]. 现代纺织技术, 2020, 28(5): 34-39. |
[5] | 许晋豪,张富丽,辛斌杰,白燕,高琮,陈卓明. 聚丙烯纤维多元共混结构对机织物导湿快干性能的影响[J]. 现代纺织技术, 2020, 28(5): 51-56. |
[6] | 颜梦佳,唐洁芳,丁笑君,金艳苹. 织物结构参数对芳纶织物阻燃性能的影响[J]. 现代纺织技术, 2019, 27(1): 27-31. |
[7] | 李勇,刘文亮,魏鹏辉,吴炜,陈晓川. 不同拓扑结构原棉品质指标预测模型的预测效果对比[J]. 现代纺织技术, 2018, 26(1): 49-54. |
[8] | 方虹,邱弢,冯岑. 基于Eviews软件的全棉斜纹布价格指数的建模预测[J]. 现代纺织技术, 2015, 23(2): 31-35. |
[9] | 高慧英. 织物结构参数对真丝绉类织物风格特性影响的研究[J]. 现代纺织技术, 2013, 21(5): 30-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||