[1]BISKUP D. Single-machine scheduling with learning considerations[J]. European Journal of Operational Research, 1999, 115(1): 173-178.
[2]杜贞,叶春明,凌远雄.应用萤火虫算法求解基于学习效应的PFSP问题[J]. 计算机工程与应用,2015,51(16):248-251, 258.
DU Zhen, YE Chunming, LING Yuanxiong. Permutation flow-shop scheduling problem with learning effect based on firefly algorithm[J]. Computer Engineering and Applications, 2015, 51(16):248-251, 258.
[3]李永林,董明,ZHANG Yufeng. 考虑学习效应的多目标流水车间调度问题[J].系统管理学报,2017,26(6):1071-1080.
LI Yonglin, DONG Ming, ZHANG Yufeng. Multi-objective flow-shop scheduling problems with a learning effect[J]. Journal of Systems & Management, 2017, 26(6):1071-1080.
[4]叶春明,侯丰龙,赵静.具有学习-遗忘效应的半导体批调度问题研究[J].运筹与管理,2019,28(7):192-199.
YE Chunming, HOU Fenglong, ZHAO Jing. Research on Semiconductor Batching Scheduling Problems with Learning and Forgetting Effects[J]. Operations Research and Management Science, 2019, 28(7):192-199.
[5]董君,叶春明. 具有学习效应的半导体晶圆制造绿色车间调度问题研究[J].运筹与管理, 2021, 30(4): 217-223.
DONG Jun,YE Chunming. Research on Green Job Shop Scheduling Problem of Semiconductor Wafers Manufacturing with Learning Effect[J]. Operations Research and Management Science, 2021, 30(4):217-223.
[6]崔琪,吴秀丽,余建军.变邻域改进遗传算法求解混合流水车间调度问题[J].计算机集成制造系统, 2017, 23(9): 1917-1927.
CUI Qi, WU Xiuli, YU Jianjun. Improved genetic algorithm variable neighborhood search for solving hybrid flow shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2017, 23(9): 1917-1927.
[7]宋存利. 求解混合流水车间调度的改进贪婪遗传算法[J]. 系统工程与电子技术, 2019, 41(5): 1079-1086.
SONG Cunli. Improved greedy genetic algorithm for solving the hybrid flow shop scheduling problem[J]. Systems Engineering and Electronic, 2019, 41(5):1079-1086.
[8]黎阳,李新宇,牟健慧.基于改进模拟退火算法的大规模置换流水车间调度[J].计算机集成制造系统, 2020, 26(2): 366-375.
LI Yang, LI Xinyu, MOU Jianhui. Large scale permutation flowshop scheduling method based on improved simulated annealing algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(2):366-375.
[9]汤可宗,詹棠森,李佐勇, 等.一种求解置换流水车间调度问题的多策略粒子群优化[J]. 南京理工大学学报,2019,43(1):48-53, 62.
TANG Kezong, ZHAN Tangsen, LI Zuoyong, et al. Multi-strategy particle swarm optimization for solving permutation flow-shop scheduling problem[J]. Journal of Nanjing University of Science and Technology, 2019, 43(1): 48-53, 62.
[10]CAO Y, XUAN H, LIU J. Dynamic hybrid flowshop scheduling with batching production[J]. Applied Mechanics and Materials, 2011, 65: 562-567.
[11]轩华,李冰,王薛苑, 等.带运输考虑的多阶段动态可重入混合流水车间调度[J]. 控制理论与应用, 2018, 35(3): 357-366.
XUAN Hua, LI Bing, WANG Xueyuan, et al. Multi-stage dynamic reentrant hybrid flowshop scheduling with transportation consideration[J]. Control Theory & Applications, 2018, 35(3):357-366.
[12]黄辉,李梦想,严永.考虑序列设置时间的混合流水车间多目标调度研究[J].运筹与管理, 2020, 29(12): 215-221.
HUANG Hui, LI Mengxiang, YAN Yong. Research on Multi-objective Scheduling of Hybrid Flow Production Shop Considering Sequence Setting Time[J]. Operations Research and Management Science, 2020, 29(12):215-221.
[13]袁庆欣,董绍华.带有限缓冲区的混合流水车间多目标调度[J]. 工程科学学报, 2021, 43(11): 1491-1498.
YUAN Qingxin, DONG Shaohua. Optimizing multi-objective scheduling problem of hybrid flow shop with limited buffer[J]. Chinese Journal of Engineering, 2021, 43(11): 1491-1498.
[14]谢子昂,杜劲松,赵国华.衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
XIE Zi’ang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10): 144-149.
[15]黄珍珍,莫碧贤 ,温李红.基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(7): 154-159.
HUANG Zhenzhen, MOU Bixian, WEN Lihong. Garment production line balance based on genetic algorithm and simulation[J]. Journal of Textile Research, 2020, 41(7): 154-159.
[16]CHIU H N. Discrete time-varying demand lot-sizing models with learning and forgetting effects[J]. Production Planning & Control, 1997, 8(5): 484-493.
[17]DEB K,PRATAP A,AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[18]侯丰龙, 叶春明, 耿秀丽.基于多目标萤火虫膜算法的学习效应生产调度问题[J]. 系统管理学报, 2018, 27(4): 704-711.
HOU Fenglong, YE Chunming, GENG Xiuli. Learning effect production scheduling problem based on multi-objective firefly membrane algorithm[J]. Journal of Systems & Management, 2018, 27(4): 704-711.
|