[1] 李金屿, 杨允出, 刘鸣茗. 基于结构特征的织物热传递性能预测研究进展 [J]. 现代纺织技术, 2022, 30(1): 18-25.
LI Jinyu, YANG Yunchu, LIU Mingming. Research progress in the prediction of heat transfer properties of fabrics based on structural characteristics [J]. Advanced Textile Technology, 2022, 30(1): 18-25.
[2] FAROOQ A S, ZHANG P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles [J]. Composites Part A: Applied Science And Manufacturing, 2021, 142: 16.
[3] 韩梦瑶, 任松, 葛灿, 等. 用于个人热管理的被动调温服装材料研究进展 [J]. 现代纺织技术, 2023, 31(1): 92-103.
HANG Mengyao, REN Song, GE Can, et al. Research progress of passive temperature-regulated clothing materials for personal thermal management [J]. Advanced Textile Technology, 2023, 31(1): 92-103.
[4] HU R, LIU Y, SHIN S, et al. Emerging materials and strategies for personal thermal management [J]. Advanced Energy Materials, 2020, 10(17): 1903921.
[5] PAKDEL E, NAEBE M, SUN L, et al. Advanced functional fibrous materials for enhanced thermoregulating performance [J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13039-13057.
[6] CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair [J]. Advanced Materials, 2018, 30(14): e1706807.
[7] WANG Y, CUI Y, SHAO Z, et al. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments [J]. Chemical Engineering Journal, 2020, 390: 124623.
[8] HSU P-C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile [J]. Science, 2016, 353(6303): 1019-1023.
[9] YAN Q, DAI W, GAO J, et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh In-plane thermal conductivity of foldable heat spreader [J]. ACS Nano, 2021, 15(4): 6489-6498.
[10] LIN Y, KANG Q, WEI H, et al. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management [J]. Nano-Micro Letters, 2021, 13(1): 180.
[11] GUO F, SHEN X, ZHOU J, et al. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets [J]. Advanced Functional Materials, 2020, 30(19): 1910826.
[12] 张青松, 张迎晨, 邱振中, 等. 凉感面料开发及其吸湿凉感机制研究 [J]. 纺织学报, 2022, 43(2): 132-139.
ZHANG Qingsong, ZHANG Yingchen, QIU Zhenzhong, et al. Mechanism research and development of moisture absorbing cool feeling fabrics[J]. Journal of Textile Research, 2022, 43(2): 132-139.
[13] 石倩, 雷华, 陈枭, 等. 氮化硼/聚合物导热复合材料的进展 [J]. 塑料, 2018, 47(3): 110-112.
SHI Qian, LEI Hua, CHEN Xiao, et al. Progress in boron nitride/polymer thermally conductive composites[J]. Plastics, 2018, 47(3): 110-112.
[14] 沈衡, 赵宁, 徐坚. 氮化硼/聚合物导热复合材料研究进展 [J]. 高分子通报, 2016 (9): 27-33.
SHEN Heng, ZHAO Ning, XU Jian. Research progress of boron nitride/polymer thermal conductive composites[J]. Polymer Bulletin, 2016 (9): 27-33.
[15] 李栋, 徐田文, 施亚伦, 等. 非对称润湿性复合墙布面料的制备及其性能 [J]. 现代纺织技术, 2022, 30(2): 184-190.
LI Dong, XU Tianwen, SHI Yalun, et al. Study on the preparation and properties of composite wall coverings with asymmetric wettability[J]. Advanced Textile Technology, 2022, 30(2): 184-190.
[16] 李婷婷, 申晓, 金肖克, 等. 涤纶表面改性处理对其增强复合材料冲击性能的影响 [J]. 现代纺织技术, 2020, 28(5): 8-12.
LI Tingting, SHEN Xiao, JIN Xiaoke, et al. Effect of surface modification on impact property of polyester reinforced composites[J]. Advanced Textile Technology, 2020, 28(5): 8-12. |