[1]马宏帅,赵世海.基于线性自抗扰控制的放卷张力控制系统[J].现代纺织技术,2019,27(1):87-92.
MA Hongshuai, ZHAO Shihai. Unwinding tension control system based on linear auto disturbance rejection control[J]. Advanced Textile Technology, 2019, 27(1): 87-92.
[2]KARAHAN O. Design of optimal fractional order fuzzy PID controller based on cuckoo search algorithm for core power control in molten salt reactors[J]. Progress in Nuclear Energy, 2021, 139: 103868.
[3]姜磊.智能梳棉机自调匀整控制系统设计开发[J].现代纺织技术,2020,28(03):89-96.
JIANG Lei. Design and development of autoleveling control system for intelligent carding machine[J]. Advanced Textile Technology, 2020, 28(03): 89-96.
[4]FANG Y M, FEI J T, YANG Y Z. Adaptive backstepping design of a microgyroscope[J]. Micromachines, 2018, 9(7): 338.
[5]徐子琴,雷明.风扰动下固定翼无人机指令滤波反步着陆控制[J].计算机仿真,2022,39(9):55-62.
XU Ziqin, LEI Ming. Command filtered backstepping landing control of fixed-wing unmanned aerial vehicle considering wind disturbance[J]. Computer Simulation, 2022, 39(9): 55-62.
[6]ZAIHIDEE M F, MEKHILEF S, MUBIN M. Robust speed control of PMSM using sliding mode control (SMC)—areview[J]. Energies, 2019, 12(9): 1669.
[7]陶慧,艾朋伟.改进滑膜控制双降压式逆变器的动力学特性[J/OL].电力系统及其自动化学报:1-8[2022-10-21].DOI:10.19635/j.cnki.csu-epsa.001115.
TAO Hui, AI Pengwei. Dynamic characteristics of double buck inverter with improved sliding mode control [J]. Proceedings of the CSU-EPSA: 1-8[2022-10-21].DOI:10.19635/j.cnki.csu-epsa.001115.
[8]WANG H Q, LIU S W, YANG X B. Adaptive neural control for non-strict-feedback nonlinear systems with input delay[J]. Information Sciences, 2020, 514: 605-616.
[9]李建伟,张磊安,黄雪梅,等.基于改进径向基神经网络的风电叶片模温串级PID控制算法[J].太阳能学报,2022,43(3):330-335.
LI Jianwei, ZHANG Lei′an, HUANG Xuemei, et al. Cascade PID control algorithm for wind turbine blade mold temperature based on improved rbf neural network [J]. Acta Energiae Solaris Sinica, 2022, 43(3): 330-335.
[10]崔征山,周扬忠,张竞,等.基于滑模和扩张状态观测器的双绕组无轴承磁通切换电机转子悬浮控制策略研究[J].仪器仪表学报,2022,43(6):269-279.
CUI Zhengshan, ZHOU Yangzhong, ZHANG Jing, etc. Research on rotor suspension control strategy of dual-winding bearingless flux-switching permanent magnet machines based on sliding mode control and extended state observer[J]. Chinese Journal of Scientific Instrument, 2022, 43(6): 269-279.
[11]黄道敏,韩丽君,唐国元,等.水下机械手分数阶积分滑模轨迹跟踪控制方法研究[J].中国机械工程,2019,30(13):1513-1518.
HUANG Daomin, HAN Lijun, TANG Guoyuan, etc. Fractional integral sliding mode control for trajectory tracking of underwater manipulators[J]. China Mechanical Engineering, 2019, 30(13): 1513-1518.
[12]邓槟槟,尚伟伟,张彬,等.6自由度绳索牵引并联机器人的快速终端滑模同步控制[J].机械工程学报,2022,58(13):50-58.
DENG Binbin, SHANG Weiwei, ZHANG Bin, etc. Fast terminal sliding mode control with synchronization error for a 6-dof cabel-driven parallel robot[J]. Journal of Mechanical Engineering, 2022, 58(13): 50-58.
[13]梁相龙,姚建勇.基于神经网络的机电伺服系统非线性控制[J/OL].控制与决策:1-7[2022-10-21].
LIANG Xianglong, YAO Jianyong. Nonlinear control of mechatronic servo system based on neural network [J/OL]. Control and Decision: 1-7[2022-10-21].
[14]RAZMI H, AFSHINFAR S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV[J]. Aerospace Science and Technology, 2019, 91: 12-27.
[15]CHEN S Y, LI T H, CHANG C H. Intelligent fractional-order backstepping control for an ironless linear synchronous motor with uncertain nonlinear dynamics[J]. ISA Transactions, 2019, 89: 218-232.
[16]熊蕊.考虑瞬态性能的工业机器人双臂反步控制方法[J].现代制造工程,2022(8):53-59.
XIONG Rui. Back-stepping control method of industrial robot dual-arm considering transient performance[J]. Modern Manufacturing Engineering, 2022(8): 53-59.
[17]FU C Y, HONG W, LU H Q, et al. Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints[J]. Aerospace Science and Technology, 2018, 78: 593-603.
[18]XU G W, ZHOU R X, LIU W, et al. The equivalent sliding mode tension control of carbon fiber multilayer diagonal loom[J]. International Journal of Control, Automation and Systems, 2019, 17(7): 1762-1769.
|