[1] 周旸. 纺织品鉴定保护的十年之路[J]. 中国文化遗产, 2011(3): 50-57.
ZHOU Yang. The construction of the Chinese silk culture preservation system[J]. China Cultural Heritage, 2011(3): 50-57.
[2] 张倩仪. 专门的纺织考古学与公众的纺织考古学[J]. 南方文物, 2019(2): 214-219.
ZHANG Qianyi. Textile archaeology: From profession to public[J]. Cultural Relics in Southern China, 2019(2): 214-219.
[3] YUSUF M, SHABBIR M, MOHAMMAD F. Natural colorants: historical, processing and sustainable prospects[J]. Natural Products and Bioprospecting, 2017, 7(1): 123-145.
[4] 李玉芳. 几种常见中国古代天然植物染料的分析鉴定研究[D]. 北京: 北京科技大学, 2020: 7-19.
LI Yufang. Analysis and Identification of Several Common Natural Botanical Dyes in Ancient China[D]. Beijing: University of Science and Technology Beijing, 2020: 7-19.
[5] CHUNGKRANG L, BHUYAN S. Natural dye sources and its applications in textiles: A brief review[J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(10): 261-269.
[6] VAN BOMMEL M R, VANDEN BERGHE I, WALLERT A M, et al. High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes[J] Journal of Chromatography A, 2007, 1157(1/2), 260-272.
[7] DO K L, SU M, ZHAO F. From historical dye to bio-colourant: Processing, identification in historical textiles and potential applications of anthraquinone-based morindone[J]. Dyes and Pigments, 2022, 205: 110482.
[8] 张彩飞, 王越平. 靛蓝染色织物的剥色及微量鉴别[J]. 北京服装学院学报(自然科学版), 2019, 39(3): 42-46.
ZHANG Caifei, WANG Yueping. Color stripping and micro-identification of indigos on dyed fabrics[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2019, 39(3): 42-46.
[9] 关立平, 刘优娜, 石东亮. 黄色植物染料染色毛织物的鉴别方法[J]. 毛纺科技, 2018, 46(6): 33-37.
GUAN Liping, LIU Youna, SHI Dongliang. Identification of woollen fabrics dyed by yellow vegetable dyestuffs[J]. Wool Textile Journal, 2018, 46(6): 33-37.
[10] 李玉芳, 魏书亚, 王亚蓉. 应用超高效液相色谱-四级杆飞行时间质谱及二极管阵列联用技术对唐代纺织品上植物染料的分析和测定[J]. 中国科学:技术科学, 2016, 46(6): 625-632.
LI Yufang, WEI Shuya, WANG Yarong. Identification of indigoid dyes in natural organic pigments used in textiles of Tang Dynasty by Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry and Diode Array Detector[J]. Scientia Sinica (Technologica), 2016, 46(6): 625-632.
[11] VALIANOU L, KARAPANAGIOTIS I, CHRYSSOULAKIS Y. Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography[J]. Analytical and Bioanalytical Chemistry, 2009, 395(7): 2175-2189.
[12] ZHANG X, Laursen R A. Development of mild extraction methods for the analysis of natural dyes in textiles of historical interest using LC-diode array detector-MS[J]. Analytical Chemistry, 2005, 77(7): 2022-2025.
[13] FORD L, HENDERSON R L, RAYNER C M, et al. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.)[J]. Journal of Chromatography A, 2017, 1487: 36-46.
[14] BLACKBURN R S. Natural dyes in madder (Rubia spp.) and their extraction and analysis in historical textiles[J]. Coloration Technology, 2017, 133(6): 449-462.
[15] LOMBARDI L, SERAFINI I, GUISO M, et al. A new approach to the mild extraction of madder dyes from lake and textile[J]. Microchemical Journal, 2016, 126: 373-380.
[16] SANYOVA J. Mild extraction of dyes by hydrofluoric acid in routine analysis of historical paint micro-samples[J]. Microchimica Acta, 2008, 162(3): 361-370.
[17] ZHANG Y, WEI L, CUI Z, et al. Characterizations of palace lantern tassels preserved in The Palace Museum, Beijing, by UPLC-ESI-Q-TOF[J]. Archaeometry, 2020, 62(3): 660-676.
[18] DE LUCA E, POLDI G, REDAELLI M, et al. Multi-technique investigation of historical Chinese dyestuffs used in Ningxia carpets[J]. Archaeological and Anthropological Sciences, 2017, 9(8): 1789-1798.
[19] POZZI F, POLDI G, BRUNI S, et al. Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus[J]. Archaeological and Anthropological Sciences, 2012, 4(3): 185-197.
[20] SERAFINI I, LOMBARDI L, FASOLATO C, et al. A new multi analytical approach for the identification of synthetic and natural dyes mixtures. The case of orcein-mauveine mixture in a historical dress of a Sicilian noblewoman of nineteenth century[J]. Natural Product Research, 2019, 33(7): 1040-1051.
[21] LEONA M, STENGER J, FERLONI E. Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art[J]. Journal of Raman Spectroscopy, 2006, 37(10): 981-992.
[22] LEONA M, LOMBARDI J R. Identification of berberine in ancient and historical textiles by surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 2007, 38(7): 853-858.
[23] JURASEKOVA Z, DOMINGO C, GARCIA-RAMOS J V, et al. In situ detection of flavonoids in weld-dyed wool and silk textiles by surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 2008, 39(10): 1309-1312.
[24] JURASEKOVA Z, DEL PUERTO E, BRUNO G, et al. Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers[J]. Journal of Raman Spectroscopy, 2010, 41(11): 1455-1461.
[25] 陈磊, 裴克梅, 康晓静, 等. 表面增强拉曼光谱对纺织品文物中茜素和茜紫素的快速检测[J]. 纺织学报, 2019, 40(3): 76-82.
CHEN Lei, PEI Kemei, KANG Xiaojing, et al. Rapidly detection of alizarin and purpurin in textile relics by surface-enhanced Raman spectroscopy[J]. Journal of Textile Research, 2019, 40(3): 76-82.
[26] LEONA M, DECUZZI P, KUBIC T A, et al. Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering[J]. Analytical Chemistry, 2011, 83(11): 3990-3993.
[27] RICCI M, LOFRUMENTO C, CASTELLUCCI E, et al. Microanalysis of organic pigments in ancient textiles by surface-enhanced Raman scattering on agar gel matrices[J]. Journal of Spectroscopy, 2016, 2016: 1-10.
[28] GERMINARIO G, CICCOLA A, SERAFINI I, et al. Gel substrates and ammonia-EDTA extraction solution: a new non-destructive combined approach for the identification of anthraquinone dyes from wool textiles[J]. Microchemical Journal, 2020, 155: 104780.
[29] 董炎明, 熊晓鹏, 郑薇, 等. 高分子研究方法[M]. 北京: 中国石化出版社, 2011: 127-136.
DONG Yanming, XIONG Xiaopeng, ZHENG Wei, et al. Research Methods of Polymers[M]. Beijing: China Petrochemical Press, 2011: 127-136.
[30] ZAFFINO C, BERTAGNA M, GUGLIELMI V, et al. In-situ spectrofluorimetric identification of natural red dyestuffs in ancient tapestries[J]. Microchemical Journal, 2017, 132: 77-82.
[31] NAKAMURA R, TANAKA Y, OGATA A, et al. Scientific evidence by fluorescence spectrometry for safflower red on ancient Japanese textiles stored in the Shosoin Treasure House repository[J]. Studies in Conservation, 2014, 59(6): 367-376.
[32] ROMANI A, CLEMENTI C, MILIANI C, et al. Fluorescence spectroscopy: A powerful technique for the noninvasive characterization of artwork[J]. Accounts of Chemical Research, 2010, 43(6): 837-846.
[33] DEGANO I, RIBECHINI E, MODUGNO F, et al. Analytical methods for the characterization of organic dyes in artworks and in historical textiles[J]. Applied Spectroscopy Reviews, 2009, 44(5): 363-410.
[34] 高路月. 古代壁画中天然有机染料的多种光谱分析:以克孜尔石窟壁画为例[D]. 杭州: 浙江大学, 2021: 5-9.
GAO Luyue. Multi-Spectroscopic Characterization of Natural Organic Dyes in Ancient Wall Paintings-Based on Kizil Cave Temples[D]. Hangzhou: Zhejiang University, 2021: 5-9.
[35] 赵星, 王丽琴. 光导纤维反射光谱法在文物、艺术品分析和保护中的进展[J]. 光谱学与光谱分析, 2017, 37(1): 21-26.
ZHAO Xing, WANG Liqin. Progress in the analysis and conservation of cultural relics and artworks with fiber optic reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 37(1): 21-26.
[36] GULMINI M, IDONE A, DAVIT P, et al. The “Coptic” textiles of the “Museo Egizio” in Torino (Italy): A focus on dyes through a multi-technique approach[J]. Archaeological and Anthropological Sciences, 2017, 9(4): 485-497.
[37] TAMBURINI D, DYER J, DAVIT P, et al. Compositional and micro-morphological characterisation of red colourants in archaeological textiles from pharaonic Egypt[J]. Molecules, 2019, 24(20): 3761.
[38] 刘剑, 陈克, 周旸, 等. 微型光纤光谱技术在植物染料鉴别与光照色牢度评估中的应用[J]. 纺织学报, 2014, 35(6): 85-88.
LIU Jian, CHEN Ke, ZHOU Yang, et al. Identification and light-fastness evaluation of vegetable dyes using miniature spectrometer with fiber optics[J]. Journal of Textile Research, 2014, 35(6): 85-88.
[39] CHAVANNE C, TROALEN L G, FRONTY I B, et al. Noninvasive characterization and quantification of anthraquinones in dyed woolen threads by visible diffuse reflectance spectroscopy[J]. Analytical Chemistry, 2022, 94(21): 7674-7682.
[40] GULMINI M, IDONE A, DIANA E, et al. Identification of dyestuffs in historical textiles: Strong and weak points of a non-invasive approach[J]. Dyes and Pigments, 2013, 98(1): 136-145.
[41] TAMBURINI D, DYER J, HEADY T, et al. Bordering on Asian paintings: Dye analysis of textile borders and mount elements to complement research on Asian pictorial art[J]. Heritage, 2021, 4(4): 4344-4365.
[42] TAMBURINI D, DYER J. Fibre optic reflectance spectroscopy and multispectral imaging for the non-invasive investigation of Asian colourants in Chinese textiles from Dunhuang (7th-10th century AD)[J]. Dyes and Pigments, 2019, 162: 494-511.
[43] 从乐平, 张永伟, 龚. 出土古代纺织品纤维定性分析与染料鉴别[J]. 北京服装学院学报(自然科学版), 2017, 37(4): 36-40,47.
CONG Leping, ZHANG Yongwei, GONG Yan. Qualitative analysis of the ancient textile fibers and identification of the dyes[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2017, 37(4): 36-40,47.
[44] 何秋菊, 王丽琴. 拉曼光谱法鉴定文物及艺术品中染料的研究进展[J]. 光谱学与光谱分析, 2016, 36(2): 401-407.
HE Qiuju, WANG Liqin. Research progress of Raman spectroscopy on dyestuff identification of ancient relics and artifacts[J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 401-407.
[45] 李清丽, 常军, 周旸. 虢国墓地M2009出土麻织品上红色染料的鉴定[J]. 文物保护与考古科学. 2019, 31(3): 122-126.
LI Qingli, CHANG Jun, ZHOU Yang. Identification of red dye on hemp fabric unearthed from Tomb M2009 in the Cemetery of Guo State[J]. Sciences of Conservation and Archaeology, 2019, 31(3): 122-126.
[46] SCHMIDT C M, TRENTELMAN K A. 1064 nm dispersive Raman micro-spectroscopy for the in situ identification of organic red colorants[J]. E-Preservation Science, 2009, 6: 10.
[47] VÍTEK P, ALI E M A, EDWARDS H G M, et al. Evaluation of portable Raman spectrometer with 1064nm excitation for geological and forensic applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86: 320-327.
[48] GUAN M, KANG X J, WEI L, et al. A dual-mode strategy combining SERS with MALDI FTICR MS based on core-shell silver nanoparticles for dye identification and semi-quantification in unearthed silks from Tang Dynasty[J]. Talanta, 2022, 241: 123277.
[49] CELIS F, SEGURA C, GOMEZ-JERIA J S, et al. Analysis of biomolecules in cochineal dyed archaeological textiles by surface-enhanced Raman spectroscopy[J]. Scientific Reports, 2021, 11(1): 1-11.
[50] ZHU J, LIU J, FAN Y, et al. SERS detection of anthraquinone dyes: Using solvothermal silver colloid as the substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282: 121646.
[51] CESARATTO A, LEONA M, POZZI F. Recent advances on the analysis of polychrome works of art: SERS of synthetic colorants and their mixtures with natural dyes[J]. Frontiers in Chemistry, 2019, 7: 105.
[52] CASADIO F, DAHER C, BELLOT-GURLET L. Raman spectroscopy of cultural heritage materials: Overview of applications and new frontiers in instrumentation, sampling modalities, and data processing[J]. Topics in Current Chemistry, 2016, 374(5): 62.
[53] LEE J, KIM M J, VAN ELSLANDE E, et al. Identification of natural dyes in ancient textiles by time-of-flight secondary ion mass spectrometry and surface-enhanced Raman spectroscopy[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(11): 8701-8705.
[54] DEROO C S, ARMITAGE R A. Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(18): 6924-6928.
[55] KRAMELL A, PORBECK F, KLUGE R, et al. A fast and reliable detection of indigo in historic and prehistoric textile samples[J]. Journal of Mass Spectrometry, 2015, 50(9): 1039-1043.
[56] KRAMELL A E, BRACHMANN A O, KLUGE R, et al. Fast direct detection of natural dyes in historic and prehistoric textiles by flowprobe TM-ESI-HRMS[J]. RSC Advances, 2017, 7(21): 12990-12997.
[57] CALA E, BENZI M, GOSETTI F, et al. Towards the identification of the lichen species in historical orchil dyes by HPLC-MS/MS[J]. Microchemical Journal, 2019, 150: 104140.
[58] LIU J, ZHOU Y, ZHAO F, et al. Identification of early synthetic dyes in historical Chinese textiles of the late nineteenth century by high-performance liquid chromatography coupled with diode array detection and mass spectrometry[J]. Coloration Technology, 2016, 132(2): 177-185.
[59] WOZNIAK M M, WITKOWSKI B, GANECZKO M, et al. Textile dyeing in Medieval Sudan evidenced by HPLC-MS analyses: Material traces of a disappeared activity[J]. Journal of Archaeological Science: Reports, 2021, 38: 103098.
[60] SABATINI F, ALCANTARA-GARCIA J, DEGANO I. Molecular characterization of a South American yellow dye source: Cosmos sulphureus[J]. Chemistry Select, 2022, 7(28): 11-20.
[61] 张晓宁, 龚德才, 龚钰轩. 连云港尹湾汉墓出土缯绣的染料研究[J]. 文物保护与考古科学, 2019, 31(3): 52-58.
ZHANG Xiaoning, GONG Decai, GONG Yuxuan. Identification of dyestuff for Han Dynasty silk fabrics unearthed from Yinwan in Lianyungang[J]. Sciences of Conservation and Archaeology, 2019, 31(3): 52-58.
[62] 张帅, 丛海林, 于冰. 超高效液相色谱的发展及在分析领域的应用[J]. 分析仪器, 2017(6): 16-27.
ZHANG Shuai, CONG Hailin, YU Bing. Development of ultra-high performance liquid chromatography and its application in the field of analysis[J]. Analytical Instrumentation, 2017 (6): 16-27.
[63] 张云, 陈杨, 崔筝, 等. 黄色缂丝绣联句幡的科学分析[J]. 中国文物科学研究, 2020(1): 91-96.
ZHANG Yun, CHEN Yang, CUI Zheng, et al. Scientific analysis of yellow Kesi embroidered couplet streamers[J]. China Cultural Heritage Scientific Research, 2020 (1): 91-96.
[64] 张林玉, 田可心, 王允丽, 等. 基于UPLC/Q-TOF MS对故宫纺织品文物中红色染料成分的分析鉴定[J]. 北京化工大学学报(自然科学版), 2017, 44(5): 52-57.
ZHANG Linyu, TIAN Kexin, WANG Yunli, et al. Characterization of natural dyes in ancient red textiles of the Qing Dynasty by ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2017, 44(5): 52-57.
[65] HAN J, WANROOIJ J, VAN BOMMEL M, et al. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography-photodiode array-electrospray ionisation mass spectrometer[J]. Journal of Chromatography A, 2017, 1479: 87-96.
[66] GUO Y J, SHI L, ZHOU X D, et al. A precise self-built secondary mass database for identifying red dyes and dyeing techniques with UPLC-MS/MS[J]. Journal of Mass Spectrometry, 2022, 57(5): e4823.
[67] TAMBURINI D, DYER J, VANDENBEUSCH M, et al. A multi-scalar investigation of the colouring materials used in textile wrappings of Egyptian votive animal mummies[J]. Heritage Science, 2021, 9(1): 106.
[68] CICCOLA A, SERAFINI I, RIPANTI F, et al. Dyes from the ashes: Discovering and characterizing natural dyes from mineralized textiles[J]. Molecules, 2020, 25(6): 1417.
[69] SEELENFREUND A, SEPÚLVEDA M, PETCHEY F, et al. Characterization of an archaeological decorated bark cloth from Agakauitai Island, Gambier archipelago, French Polynesia[J]. Journal of Archaeological Science, 2016, 76: 56-69.
|