现代纺织技术 ›› 2023, Vol. 31 ›› Issue (5): 249-258.
收稿日期:
2023-03-07
出版日期:
2023-09-10
网络出版日期:
2023-09-21
作者简介:
韩井闯(1999—),男,江苏盐城人,硕士研究生,主要从事柔性钙钛矿太阳能电池力学稳定性方面的研究。
基金资助:
Received:
2023-03-07
Published:
2023-09-10
Online:
2023-09-21
摘要: 近年来,随着钙钛矿光伏技术的迅速发展,柔性钙钛矿太阳能电池由于具有重量轻、高效率和高柔韧性等特点,在柔性可穿戴设备应用中具有广阔的发展前景。本文综述了近年来研究学者在柔性基底、柔性电极、电荷传输层、钙钛矿薄膜及其与界面处的力学稳定性的改善工作,同时阐述了柔性钙钛矿太阳能电池的力学性能实验测试方法以及有限元模拟验证的进展状况,为柔性钙钛矿太阳能电池的进一步研究提供了参考和借鉴。最后,对柔性钙钛矿太阳能电池的未来发展方向进行了展望,并指出了未来研究的重点。
中图分类号:
韩井闯, 宋立新, 熊 杰. 柔性钙钛矿太阳能电池的力学稳定性研究进展[J]. 现代纺织技术, 2023, 31(5): 249-258.
HAN Jingchuanga, SONG Lixinb, XIONG Jieb. Research progress on the mechanical stability of flexible perovskite solar cells[J]. Advanced Textile Technology, 2023, 31(5): 249-258.
[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [2] KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chemical Communications, 2013, 49(94): 11089-11091. [3] WU C C, WANG D, ZHANG Y Q, et al. FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process[J]. Advanced Functional Materials, 2019, 29(34): 1902974. [4] YU J G, WANG M C, LIN S C. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices[J]. ACS Nano, 2016, 10(12): 11044-11057. [5] JUNG H S, HAN G S, PARK N G, et al. Flexible perovskite solar cells[J]. Joule, 2019, 3(8): 1850-1880. [6] MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nature Communications, 2020, 11: 3016. [7] WANG Z, ZENG L X, ZHANG C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%[J]. Advanced Functional Materials, 2020, 30(32): 2001240. [8] TAVAKOLI M M, LIN Q F, LEUNG S F, et al. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates[J]. Nanoscale, 2016, 8(7): 4276-4283. [9] 黄增麒. 柔性钙钛矿薄膜结晶调控及其太阳能电池性能研究[D]. 南昌: 南昌大学, 2020. HUANG Zengqi. Study on Crystallization Control of Flexible Perovskite Solar Cells[D]. Nanchang: Nanchang University, 2020. [10] LEE G, KIM M C, CHOI Y W, et al. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source[J]. Energy & Environmental Science, 2019, 12(10): 3182-3191. [11] KIM U, HAN M, JANG J, et al. Foldable perovskite solar cells and modules enabled by mechanically engineered ultrathin indium-tin-oxide electrodes[J]. Advanced Energy Materials, 2023, 13(2): 2203198. [12] WANG S S, ZHANG Z P, TANG Z K, et al. Polymer strategies for high-efficiency and stable perovskite solar cells[J]. Nano Energy, 2021, 82: 105712. [13] 曹沛禹, 李一全, 许金凯, 等. ITO/PET柔性薄膜拉伸过程裂纹产生与扩展实验分析[J]. 长春理工大学学报(自然科学版), 2019, 42(6): 44-49. CAO Peiyu, LI Yiquan, XU Jinkai, et al. Experimental analysis of crack initiation and propagation in ITO/PET flexible films during tensile process[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(6) :44-49. [14] 尹淑慧, 袁颖奇, 刘文超, 等. 碳材料电极在无空穴传输层钙钛矿太阳能电池中的应用进展[J]. 大连海事大学学报, 2021, 47(2):105-114. YIN Shuhui, YUAN Yingqi, LIU Wenchao, et al. Application progress of hole-transport-material-free perovskite solar cells with carbon materials as counter electrode[J]. Journal of Dalian Maritime University, 2021, 47(2):105-114. [15] YOON J, KIM U, YOO Y, et al. Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor[J]. Advanced Science, 2021, 8(7): 2004092. [16] JEON I, YOON J, KIM U, et al. High-performance solution-processed double-walled carbon nanotube transparent electrode for perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(27): 1901204. [17] LIU Z K, YOU P, XIE C, et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J]. Nano Energy, 2016, 28: 151-157. [18] HEO J H, SHIN D H, LEE M L, et al. Efficient organic-inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31413-31421. [19] YOON J, SUNG H, LEE G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources[J]. Energy & Environmental Science, 2017, 10(1): 337-345. [20] HEO J H, SHIN D H, SONG D H, et al. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(18): 8251-8258. [21] HAN J, YUAN S, LIU L N, et al. Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze[J]. Journal of Materials Chemistry A, 2015, 3(10): 5375-5384. [22] SEARS K K, FIEVEZ M, GAO M, et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes[J]. Solar RRL, 2017, 1(8): 1700059. [23] ZUO C T, VAK D, ANGMO D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells[J]. Nano Energy, 2018, 46: 185-192. [24] PARK M, KIM H J, JEONG I, et al. Mechanically recoverable and highly efficient perovskite solar cells: Investigation of intrinsic flexibility of organic-inorganic perovskite[J]. Advanced Energy Materials, 2015, 5(22): 1501406. [25] POORKAZEM K, LIU D Y, KELLY T L. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3(17): 9241-9248. [26] DIANETTI M, DI GIACOMO F, POLINO G, et al. TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 140: 150-157. [27] HU X T, MENG X C, ZHANG L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule, 2019, 3(9): 2205-2218. [28] XIE H X, LIANG T, YIN X T, et al. Mechanical stability study on PEDOT: PSS-based ITO-free flexible perovskite solar cells[J]. ACS Applied Energy Materials, 2022, 5(3): 3081-3091. [29] CHEN W P, ZHANG R J, YANG X, et al. A 1D: 2D structured AgNW: MXene composite transparent electrode with high mechanical robustness for flexible photovoltaics[J]. Journal of Materials Chemistry C, 2022, 10(22): 8625-8633. [30] 杨英, 罗媛, 马书鹏, 等. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302. YANG YING, LUO YUAN, MA SHUPENG, et al. Advances of electron transport materials in perovskite solar cells: Synthesis and application[J]. Progress in Chemistry, 2021, 33(2): 281-302. [31] 张彩峰, 高文辉, 邵志猛, 等. 低温电子传输层对钙钛矿太阳能电池性能的影响[J]. 太原理工大学学报, 2020, 51(1):59-65. ZHANG Caifeng, GAO Wenhui, SHAO Zhimeng, et al. Effect of low-temperature eletctron transport layers on device performance of perovskite solar cells[J]. Journal of Taiyuan University of Technology, 2020, 51(1):59-65. [32] LIAO J F, WU W Q, JIANG Y, et al. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells[J]. Chemical Society Reviews, 2020, 49(2): 354-381. [33] 杜以博, 林琳, 何丹农. 钙钛矿太阳能电池空穴传输材料的研究进展[J]. 材料导报, 2017, 31(S2): 1-7. DU Yibo, LIN Lin, HE Dannong. Progress in the research of cavity transport materials for calcium titanite solar cells[J]. Materials Reports, 2017, 31(S2): 1-7. [34] HU X T, HUANG Z Q, ZHOU X, et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold[J]. Advanced Materials, 2017, 29(42): 1703236. [35] 李清流, 甘永进, 覃斌毅, 等. 无空穴传输层锡基钙钛矿太阳能电池性能探讨[J]. 传感器与微系统, 2022, 41(5):14-17. LI Qingliu, GAN Yongjin, QIN Binyi, et al. Discussion on performance of HTL-free tin-based perovskite solar cells[J]. Transducer and Microsystem Technologies, 2022, 41(5):14-17. [36] 甘一升, 陈苗苗, 王玉龙, 等. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23):4047-4050,4078. GAN Yisheng, CHEN Miaomiao, WANG Yulong, et al. Hole-transport-layer-free organic-inorgan hybrid perovskite solar cells with ZnO nanorod arrays as electron transport layer[J]. Materials Reports, 2018, 32(23): 4047-4050,4078. [37] SHPATZ DAYAN A, ETGAR L. Study of electron transport layer-free and hole transport layer-free inverted perovskite solar cells[J]. Solar RRL, 2022, 6(1): 2100578. [38] WANG L, YANG S Z, HAN Q J, et al. Carrier transport layer-free perovskite solar cells[J]. ChemSusChem, 2021, 14(21): 4776-4782. [39] LIU C, ZHANG L Z, ZHOU X Y, et al. Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%[J]. Advanced Functional Materials, 2019, 29(47): 1807604. [40] CHEN Z Y, CHENG Q R, CHEN H Y, et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency[J]. Advanced Materials, 2023, 35(18): 2300513. [41] WANG H, ZHU C, LIU L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability[J]. Advanced Materials, 2019, 31(48): e1904408. [42] GHOSH S, MISHRA S, SINGH T. Antisolvents in perovskite solar cells: importance, issues, and alternatives[J]. Advanced Materials Interfaces, 2020, 7(18): 2000950. [43] FENG J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers[J]. APL Materials, 2014, 2(8): 081801. [44] GAO H Q, WEI W J, LI L S, et al. Mechanical properties of a 2D lead-halide perovskite,(C6H5CH2NH3)2PbCl4, by nanoindentation and first-principles calculations[J]. The Journal of Physical Chemistry C, 2020, 124(35): 19204-19211. [45] LI S, ZHAO S G, CHU H Q, et al. Unraveling the factors affecting the mechanical properties of halide perovskites from first-principles calculations[J]. The Journal of Physical Chemistry C, 2022, 126(9): 4715-4725. [46] DONG Q S, CHEN M, LIU Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability[J]. Joule, 2021, 5(6): 1587-1601. [47] 姬超, 梁春军, 由芳田, 等. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响[J]. 物理学报, 2021, 70(2):274-303. JI Chao, LIANG Chunjun, YOU Fangtian, et al. Effect of interfacial modification on the performance of organic-inorganic hybrid chalcogenide solar cell performance[J]. Acta Physica Sinica, 2021, 70(2): 274-303. [48] 周瑾璟, 钟敏. 铅卤钙钛矿太阳能电池界面工程的近期进展[J]. 复合材料学报, 2022, 39(5):1937-1955. ZHOU Jinjing, ZHONG Min. Recent progress of interface engineering for lead halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5):1937-1955. [49] 崔钰莹. 界面工程在大面积柔性钙钛矿太阳能电池中的应用[J]. 冶金管理, 2020(9): 86-87. CUI Yuying. Application of interface engineering in large area flexible chalcogenide solar cells[J]. China Steel Focus, 2020(9): 86-87. [50] DAI Z H, YADAVALLI S K, CHEN M, et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability[J]. Science, 2021, 372(6542): 618-622. [51] DAI Z H, LI S R, LIU X, et al. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability[J]. Advanced Materials, 2022,34(47): e2205301. |
[1] | 王艳敏, 丁新波, 刘 涛, 仇巧华, HASAN MD Kamrul, 朱灵奇, 周家宝. 聚乙烯醇/透明质酸复合导电水凝胶的制备及其传感和抗菌性能[J]. 现代纺织技术, 2024, 32(8): 23-34. |
[2] | 高 玥, 陶庆云, 孟粉叶, 晏雄, 胡吉永. 编织芯鞘型摩擦发电传感纱的结构参数对其性能的影响[J]. 现代纺织技术, 2024, 32(7): 1-12. |
[3] | 赵世康, 王 航, 田明伟. 平行电极式电致发光纱线的构筑成型及其水上救援可穿戴应用[J]. 现代纺织技术, 2024, 32(4): 45-51. |
[4] | 岳欣琰, 洪剑寒. 一维结构可穿戴柔性传感器研究进展[J]. 现代纺织技术, 2024, 32(2): 27-39. |
[5] | 谢金林, 张 京, 郭宇星, 赵志慧, 邱 华, 顾 鹏. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(6): 241-254. |
[6] | 房翔敏, 曲丽君, 田明伟. 绒面织物基摩擦电式压力传感器的制备及其应用[J]. 现代纺织技术, 2023, 31(4): 183-191. |
[7] | 尹云雷, 郭成, 杨红英, 李虹, 王政. 电子织物在智能可穿戴领域的研究进展[J]. 现代纺织技术, 2023, 31(1): 1-12. |
[8] | 张惠蓉, 夏兆鹏, 陈浩, 潘佳俊, 王涛, 刘晓辰. 可穿戴电加热元件的制备及可靠性[J]. 现代纺织技术, 2023, 31(1): 13-27. |
[9] | 梁嘉文, 李婷婷, 严占林, 张斌, 曹重阳, 傅智芳, 陈乃超. 可穿戴设备的能源供给研究进展[J]. 现代纺织技术, 2023, 31(1): 28-39. |
[10] | 朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. |
[11] | 张赢心, 徐磊, 王大伟, 李楠, 杨云飞. 织物电极在生物电信号监测中的研究进展[J]. 现代纺织技术, 2022, 30(4): 42-49. |
[12] | 马美静,刘丽妍,高新华,刘皓. 基于新型材料的柔性生物电干电极的研究进展[J]. 现代纺织技术, 2021, 29(4): 18-26. |
[13] | 姜茂欣,鲁虹,黄婉蓉,李鑫鑫. 基于LilyPad Arduino的宠物狗智能夜行服研发[J]. 现代纺织技术, 2021, 29(3): 65-70. |
[14] | 王垚a,王跃丹a,朱如枫b,王栋. 纤维基有机电化学晶体管研究进展[J]. 现代纺织技术, 2020, 28(5): 21-33. |
[15] | 刘津池,于淼,王侠. 摩擦纳米发电机在织物基智能可穿戴中的应用[J]. 现代纺织技术, 2020, 28(4): 53-63. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 104
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||