[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[2] KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chemical Communications, 2013, 49(94): 11089-11091.
[3] WU C C, WANG D, ZHANG Y Q, et al. FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process[J]. Advanced Functional Materials, 2019, 29(34): 1902974.
[4] YU J G, WANG M C, LIN S C. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices[J]. ACS Nano, 2016, 10(12): 11044-11057.
[5] JUNG H S, HAN G S, PARK N G, et al. Flexible perovskite solar cells[J]. Joule, 2019, 3(8): 1850-1880.
[6] MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nature Communications, 2020, 11: 3016.
[7] WANG Z, ZENG L X, ZHANG C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%[J]. Advanced Functional Materials, 2020, 30(32): 2001240.
[8] TAVAKOLI M M, LIN Q F, LEUNG S F, et al. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates[J]. Nanoscale, 2016, 8(7): 4276-4283.
[9] 黄增麒. 柔性钙钛矿薄膜结晶调控及其太阳能电池性能研究[D]. 南昌: 南昌大学, 2020.
HUANG Zengqi. Study on Crystallization Control of Flexible Perovskite Solar Cells[D]. Nanchang: Nanchang University, 2020.
[10] LEE G, KIM M C, CHOI Y W, et al. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source[J]. Energy & Environmental Science, 2019, 12(10): 3182-3191.
[11] KIM U, HAN M, JANG J, et al. Foldable perovskite solar cells and modules enabled by mechanically engineered ultrathin indium-tin-oxide electrodes[J]. Advanced Energy Materials, 2023, 13(2): 2203198.
[12] WANG S S, ZHANG Z P, TANG Z K, et al. Polymer strategies for high-efficiency and stable perovskite solar cells[J]. Nano Energy, 2021, 82: 105712.
[13] 曹沛禹, 李一全, 许金凯, 等. ITO/PET柔性薄膜拉伸过程裂纹产生与扩展实验分析[J]. 长春理工大学学报(自然科学版), 2019, 42(6): 44-49.
CAO Peiyu, LI Yiquan, XU Jinkai, et al. Experimental analysis of crack initiation and propagation in ITO/PET flexible films during tensile process[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(6) :44-49.
[14] 尹淑慧, 袁颖奇, 刘文超, 等. 碳材料电极在无空穴传输层钙钛矿太阳能电池中的应用进展[J]. 大连海事大学学报, 2021, 47(2):105-114.
YIN Shuhui, YUAN Yingqi, LIU Wenchao, et al. Application progress of hole-transport-material-free perovskite solar cells with carbon materials as counter electrode[J]. Journal of Dalian Maritime University, 2021, 47(2):105-114.
[15] YOON J, KIM U, YOO Y, et al. Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor[J]. Advanced Science, 2021, 8(7): 2004092.
[16] JEON I, YOON J, KIM U, et al. High-performance solution-processed double-walled carbon nanotube transparent electrode for perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(27): 1901204.
[17] LIU Z K, YOU P, XIE C, et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J]. Nano Energy, 2016, 28: 151-157.
[18] HEO J H, SHIN D H, LEE M L, et al. Efficient organic-inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31413-31421.
[19] YOON J, SUNG H, LEE G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources[J]. Energy & Environmental Science, 2017, 10(1): 337-345.
[20] HEO J H, SHIN D H, SONG D H, et al. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(18): 8251-8258.
[21] HAN J, YUAN S, LIU L N, et al. Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze[J]. Journal of Materials Chemistry A, 2015, 3(10): 5375-5384.
[22] SEARS K K, FIEVEZ M, GAO M, et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes[J]. Solar RRL, 2017, 1(8): 1700059.
[23] ZUO C T, VAK D, ANGMO D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells[J]. Nano Energy, 2018, 46: 185-192.
[24] PARK M, KIM H J, JEONG I, et al. Mechanically recoverable and highly efficient perovskite solar cells: Investigation of intrinsic flexibility of organic-inorganic perovskite[J]. Advanced Energy Materials, 2015, 5(22): 1501406.
[25] POORKAZEM K, LIU D Y, KELLY T L. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3(17): 9241-9248.
[26] DIANETTI M, DI GIACOMO F, POLINO G, et al. TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 140: 150-157.
[27] HU X T, MENG X C, ZHANG L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule, 2019, 3(9): 2205-2218.
[28] XIE H X, LIANG T, YIN X T, et al. Mechanical stability study on PEDOT: PSS-based ITO-free flexible perovskite solar cells[J]. ACS Applied Energy Materials, 2022, 5(3): 3081-3091.
[29] CHEN W P, ZHANG R J, YANG X, et al. A 1D: 2D structured AgNW: MXene composite transparent electrode with high mechanical robustness for flexible photovoltaics[J]. Journal of Materials Chemistry C, 2022, 10(22): 8625-8633.
[30] 杨英, 罗媛, 马书鹏, 等. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
YANG YING, LUO YUAN, MA SHUPENG, et al. Advances of electron transport materials in perovskite solar cells: Synthesis and application[J]. Progress in Chemistry, 2021, 33(2): 281-302.
[31] 张彩峰, 高文辉, 邵志猛, 等. 低温电子传输层对钙钛矿太阳能电池性能的影响[J]. 太原理工大学学报, 2020, 51(1):59-65.
ZHANG Caifeng, GAO Wenhui, SHAO Zhimeng, et al. Effect of low-temperature eletctron transport layers on device performance of perovskite solar cells[J]. Journal of Taiyuan University of Technology, 2020, 51(1):59-65.
[32] LIAO J F, WU W Q, JIANG Y, et al. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells[J]. Chemical Society Reviews, 2020, 49(2): 354-381.
[33] 杜以博, 林琳, 何丹农. 钙钛矿太阳能电池空穴传输材料的研究进展[J]. 材料导报, 2017, 31(S2): 1-7.
DU Yibo, LIN Lin, HE Dannong. Progress in the research of cavity transport materials for calcium titanite solar cells[J]. Materials Reports, 2017, 31(S2): 1-7.
[34] HU X T, HUANG Z Q, ZHOU X, et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold[J]. Advanced Materials, 2017, 29(42): 1703236.
[35] 李清流, 甘永进, 覃斌毅, 等. 无空穴传输层锡基钙钛矿太阳能电池性能探讨[J]. 传感器与微系统, 2022, 41(5):14-17.
LI Qingliu, GAN Yongjin, QIN Binyi, et al. Discussion on performance of HTL-free tin-based perovskite solar cells[J]. Transducer and Microsystem Technologies, 2022, 41(5):14-17.
[36] 甘一升, 陈苗苗, 王玉龙, 等. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23):4047-4050,4078.
GAN Yisheng, CHEN Miaomiao, WANG Yulong, et al. Hole-transport-layer-free organic-inorgan hybrid perovskite solar cells with ZnO nanorod arrays as electron transport layer[J]. Materials Reports, 2018, 32(23): 4047-4050,4078.
[37] SHPATZ DAYAN A, ETGAR L. Study of electron transport layer-free and hole transport layer-free inverted perovskite solar cells[J]. Solar RRL, 2022, 6(1): 2100578.
[38] WANG L, YANG S Z, HAN Q J, et al. Carrier transport layer-free perovskite solar cells[J]. ChemSusChem, 2021, 14(21): 4776-4782.
[39] LIU C, ZHANG L Z, ZHOU X Y, et al. Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%[J]. Advanced Functional Materials, 2019, 29(47): 1807604.
[40] CHEN Z Y, CHENG Q R, CHEN H Y, et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency[J]. Advanced Materials, 2023, 35(18): 2300513.
[41] WANG H, ZHU C, LIU L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability[J]. Advanced Materials, 2019, 31(48): e1904408.
[42] GHOSH S, MISHRA S, SINGH T. Antisolvents in perovskite solar cells: importance, issues, and alternatives[J]. Advanced Materials Interfaces, 2020, 7(18): 2000950.
[43] FENG J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers[J]. APL Materials, 2014, 2(8): 081801.
[44] GAO H Q, WEI W J, LI L S, et al. Mechanical properties of a 2D lead-halide perovskite,(C6H5CH2NH3)2PbCl4, by nanoindentation and first-principles calculations[J]. The Journal of Physical Chemistry C, 2020, 124(35): 19204-19211.
[45] LI S, ZHAO S G, CHU H Q, et al. Unraveling the factors affecting the mechanical properties of halide perovskites from first-principles calculations[J]. The Journal of Physical Chemistry C, 2022, 126(9): 4715-4725.
[46] DONG Q S, CHEN M, LIU Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability[J]. Joule, 2021, 5(6): 1587-1601.
[47] 姬超, 梁春军, 由芳田, 等. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响[J]. 物理学报, 2021, 70(2):274-303.
JI Chao, LIANG Chunjun, YOU Fangtian, et al. Effect of interfacial modification on the performance of organic-inorganic hybrid chalcogenide solar cell performance[J]. Acta Physica Sinica, 2021, 70(2): 274-303.
[48] 周瑾璟, 钟敏. 铅卤钙钛矿太阳能电池界面工程的近期进展[J]. 复合材料学报, 2022, 39(5):1937-1955.
ZHOU Jinjing, ZHONG Min. Recent progress of interface engineering for lead halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5):1937-1955.
[49] 崔钰莹. 界面工程在大面积柔性钙钛矿太阳能电池中的应用[J]. 冶金管理, 2020(9): 86-87.
CUI Yuying. Application of interface engineering in large area flexible chalcogenide solar cells[J]. China Steel Focus, 2020(9): 86-87.
[50] DAI Z H, YADAVALLI S K, CHEN M, et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability[J]. Science, 2021, 372(6542): 618-622.
[51] DAI Z H, LI S R, LIU X, et al. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability[J]. Advanced Materials, 2022,34(47): e2205301. |