[1]张勇, 陆浩杰, 梁晓平,等. 蚕丝基智能纤维及织物:潜力、现状与未来展望[J]. 物理化学学报, 2022, 38(9): 64-79.
ZHANG Yong, LU Haojie, LIANG Xiaoping, et al. Silk materials for intelligent fibers and textiles: Potential, progress and future perspective[J]. Acta Physico-Chimica Sinica, 2022, 38(9): 64-79.
[2] 张炜, 毛庆楷, 朱鹏,等. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(6): 86-92.
ZHANG Wei, MAO Qingkai, ZHU Peng, et al. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol/water system[J]. Journal of Textile Research, 2020, 41(6): 86-92.
[3] 李佳, 王勃翔, 霍雨心,等. 纳米改性制备温敏响应性柞蚕丝织物[J]. 丝绸, 2022, 59(10): 20-26.
LI Jia, WANG Boxiang, HUO Yuxin, et al. Thermo-responsive tussah silk fabric modified with nanotechnology[J]. Journal of Silk, 2022, 59(10): 20-26.
[4] LIU J L, LIANG J Y, DING J N, et al. Microfiber pollution: An ongoing major environmental issue related to the sustainable development of textile and clothing industry[J]. Environment, Development and Sustainability, 2021, 23(8): 11240-11256.
[5] CHEN L Z, CARO F,Corbett C J. Estimating the environmental and economic impacts of widespread adoption of potential technology solutions to reduce water use and pollution: Application to China's textile industry[J]. Environmental Impact Assessment Review, 2019, 79: 106293.
[6] 鲁秀国, 官伟, 陈晶. 壳聚糖化学改性吸附水中重金属的研究进展[J]. 化工新型材料, 2022, 50(12): 254.
LU Xiuguo, GUAN Wei, CHEN Jing. Research progress on adsorption of heavy metals in water by chemical modification of chitosan[J]. New Chemical Materials, 2022, 50(12): 254.
[7] 汤薇, 董静, 赵金荣,等. 壳聚糖改性及改性壳聚糖应用研究进展[J]. 济南大学学报(自然科学版), 2023, 37(1): 84-93.
TANG Wei, DONG Jing, ZHAO Jinrong, et al. Research process in chitosan modification and application of modified chitosan[J]. Journal of University of Jinan (Science and Technology), 2023, 37(1): 84-93.
[8] 张雨航,孙润军,魏亮,等.壳聚糖季铵盐溶液对涤/棉织物的抗菌整理[J].纺织高校基础科学学报,2022,35(4):68-73.
ZHANG Yuhang, SUN Runjun, WEI Liang, et al. Antibacterial finishing of polyester cotton fabric with chitosan quaternary ammonium salt solution[J]. Basic Sciences Journal of Textile Universities, 2022,35(4):68-73.
[9]OBEIDAT W M, GHARAIBEH S F, JARADAT A. The influence of drugs solubilities and chitosan-TPP formulation parameters on the mean hydrodynamic diameters and drugs entrapment efficiencies into chitosan-TPP nanoparticles[J]. AAPS PharmSciTech, 2022, 23(7): 262.
[10]郑宏飞, 汪泳, 汪庆,等. 壳聚糖在二元离子液体中的溶解性及结构[J]. 高分子材料科学与工程, 2020, 36(12): 82-89.
ZHENG Hongfei, WANG Yong, WANG Qing, et al. Solubility and structure of chitosan in binary ionic liquids[J]. Polymer Materials Science & Engineering, 2020, 36(12): 82-89.
[11] FERRERO F, PERIOLATTO M, BURELLI S, et al. Silk grafting with chitosan and crosslinking agents[J]. Fibers and Polymers, 2010, 11(2): 185-192.
[12] DAVARPANAH S, MAHMOODI N M, ARAMI M, et al. Environmentally friendly surface modification of silk fiber: chitosan grafting and dyeing[J]. Applied Surface Science, 2009,255: 4171-4176.
[13] SHARIATINIA Z. Carboxymethyl chitosan: Properties and biomedical applications[J]. International Journal of Biological Macromolecules, 2018, 120: 1406-1419.
[14] 吴沥豪, 陈功, 任康,等. 羧甲基壳聚糖基生物医用材料降解代谢行为的研究进展[J]. 高分子通报, 2023, 36(2): 148-157.
WU Lihao, CHEN Gong, REN Kang, et al. Research progress on in vivo degradation and metabolism assessment of carboxymethyl chitosan-based biomaterials[J]. Polymer Bulletin, 2023, 36(2): 148-157.
[15] ZHANG Z T, CHEN L, JI J M, et al. Antibacterial properties of cotton fabrics treated with chitosan[J]. Textile Research Journal, 2003, 73(12): 1103-1106.
[16] SAHARIAH P, Másson M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846-3868.
[17] 张伟. 经壳聚糖季铵盐处理后真丝(绸)结构与性能的研究[D]. 苏州: 苏州大学, 2007: 20-35.
ZHANG Wei. Research on the Structure and Properties of Silk Fiber (Fabric) Treated with HTCC[D]. Suzhou: Soochow University, 2007: 20-35.
[18] LIM S H, HUDSON S M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group[J]. Carbohydrate Research, 2004,339(2): 313-319.
[19] WU Y, YANG S, FU F Y, et al. Amino acid-mediated loading of Ag NPs and tannic acid onto cotton fabrics: Increased antibacterial activity and decreased cytotoxicity[J]. Applied Surface Science, 2022, 576: 151821.
[20] YANG W Q, Lv L L, LI X K, et al. Quaternized silk nanofibrils for electricity generation from moisture and ion rectification[J]. ACS Aano, 2020, 14(8): 10600-10607.
[21] LU Q, HU X, WANG X Q, et al. Water-insoluble silk films with silk I structure[J]. Acta Biomaterialia, 2010, 6(4): 1380-1387.
[22] WANG P, ZHANG M Y, QU J H, et al. Antibacterial cotton fabric prepared by a “grafting to” strategy using a QAC copolymer[J]. Cellulose, 2022, 29(6): 3569-3581.
[23] 郑宏飞, 汪瑞琪, 汪庆, 等. 氧化壳聚糖改性抗菌蚕丝织物的制备及其性能[J]. 纺织学报, 2020, 41(5): 121-128.
ZHENG Hongfei, WANG Ruiqi, WANG Qing, et al. Preparation and properties of antibacterial silk fabric modified with oxidized chitosan [J]. Journal of Textile Research, 2020, 41(5): 121-128.
[24] HU X, KAPLAN D, CEBE P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy[J]. Macromolecules, 2006, 39(18): 6161-6170.
[25] YE J L, MA S Q, WANG B B, et al. High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties[J].Green Chemistry, 2021, 23(4): 1772-1781.
[26] LU Y H, LIN H, CHEN Y Y, et al. Structure and performance of Bombyx mori silk modified with nano-TiO2 and chitosan[J]. Fibers and Polymers, 2007, 8(1): 1-6.
[27] DUAN P P, XU Q B, ZHANG X J, et al. Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions[J]. Cellulose, 2020, 27(11): 6603-6615.
[28] YAN X J, ZHU X W, RUAN Y T, et al. Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil-water separation[J]. Cellulose, 2020, 27(13): 7873-7885.
[29] SHEN L, DAI J J. Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment[J]. Applied Surface Science, 2007, 253(11): 5051-5055.
[30] LI G H, LIU H, LI T D, et al. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications[J]. Materials Science and Engineering, 2012, 32(4): 627-636.
[31] 寇爱静, 林欢, 柳守婷等. 饲喂法制备碳纳米材料改性蚕丝的导热性能[J]. 材料科学与工程学报, 2021, 39(2): 317-321.
DOU Aijing, LIN Haun, LIU Shouting, et al. Thermal conductivity of modified silk prepared by feeding carbon nanomaterials[J]. Journal of Materials Science and Engineering, 2021, 39(2): 317-321.
[32] FFerrero F, Periolatto M, Luraschi M. Silk grafting with methacrylic monomers: process optimization and compa- rison[J]. Journal of Applied Polymer Science.,2007,103(6): 4039-4046.
[33] 于海洋, 王昉, 刘其春, 等. 新型丝素蛋白膜的结构和热分解动力学机理[J]. 物理化学学报, 2017, 33(2): 344-355.
YU Haiyang, WANG Fang, LIU Qichun, et al. Structure and kinetics of thermal decomposition mechanism of novel silk fibroin films[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 344-355.
|