[1]李丑旦,祝双武,马阿辉,等.基于方向灰度积分曲线特征的织物疵点检测算法研究[J].丝绸,2023,60(4):51-60.
LI Choudan, ZHU Shuangwu, MA Ahui, et al. Research on the fabric defect detection algorithm based on the feature of directional gray integration curve [J]. Journal of Silk, 2023,60 (4): 51-60
[2]郑雨婷,王成群,陈亮亮,等.基于卷积神经网络的织物图像识别方法研究进展[J].现代纺织技术,2022,30(5):1-11,20.
ZHENG Yuting, WANG Chengqun, CHEN Liangliang, et al. Research progress on fabric image processing methods based on convolutional neural network[J]. Advanced Textile Technology, 2022,30 (5): 1-11,20
[3]顾德英,陈龙,李文超,等.基于深度学习的复杂图案印花织物疵点检测[J].棉纺织技术,2022,50(3):14-18.
GU Deying, CHEN Long, LI Wenchao, et al. Complex pattern printed fabric defect detection based on deep learning [J]. Cotton Textile Technology, 2022,50 (3): 14-18
[4]赵树煊,张洁,汪俊亮,等.基于两阶段深度迁移学习的面料疵点检测算法[J].机械工程学报,2021,57(17):86-97.
ZHAO Shuxuan, ZHANG Jie, WANG Junliang, et al. Fabric defect detection algorithm based on two-stage deep transfer learning[J]. Journal of Mechanical Engineering, 2021,57 (17): 86-97
[5]高敏,邹阳林,曹新旺.基于改进YOLOv5模型的织物疵点检测[J/OL].现代纺织技术:1-9[2023-06-20].DOI:10.19398/j.att.202209017.
GAO Min, ZOU Yanglin, CAO Xinwang. Fabric defect detection based on improved YOLOv5 model [J/OL]. Advanced Textile Technology: 1-9 [2023-06-20]. DOI: 10.19398/j.att.202209017
[6]杨益暄,田益民,崔圆斌,等.基于深度学习方法的手写文本行提取综述[J].智能计算机与应用,2020,10(11):154-157,160.
YANG Yixuan, TIAN Yimin, CUI Yuanbin, et al. A review of handwritten text line extraction based on deep learning methods [J]. Intelligent Computers and Applications, 2020,10 (11): 154-157,160
[7]钟志峰,何佳伟,侯瑞洁,等.改进UNet的轻量化道路图像语义分割算法[J].现代电子技术,2022,45(19):71-76.
ZHONG Zhifeng, HE Jiawei, HOU Ruijie, et al. Improved lightweight road image semantic segmentation algorithm for UNet[J]. Modern Electronics Technique, 2022,45 (19): 71-76.
[8]张友桐.融合变化向量与Unet的变化检测方法[J].北京测绘,2022,36(8):1079-1083.
ZHANG Youtong. Change detection method integrating CVA and Unet[J]. Beijing Surveying and Mapping, 2022,36 (8): 1079-1083.
[9]黄烜,孙晗,林博生,等.基于改进ResNet-50残差网络的纤维分类方法[J].西安工程大学学报,2022,36(4):19-25.DOI:10.13338/j.issn.1674-649x.2022.04.003.
HUANG Xuan, SUN Han, LIN Bosheng, et al. Fiber classification method based on improveResNet-50 residual network [J]. Journal of Xi'an Polytechnic University, 2022,36 (4): 19-25. DOI: 10.13338/j.issn.1674-649x.2022.04.003
[10]罗维平,徐洋,陈永恒,等.基于迁移学习和改进ResNet50网络的织物疵点检测算法[J].毛纺科技,2021,49(2):71-78.
LUO Weiping, XU Yang, CHEN Yongheng, et al. Fabric defect detection algorithm based on transfer learning and improved ResNet50 network [J]. Wool Textile Technology, 2021,49 (2): 71-78.
[11] GONG Q, KANG W, FAHROO F. Approximation of compositional functions with ReLU neural networks[J]. Systems & Control Letters,2023,175:105508.
[12]杨其睿.油田安防领域基于改进的深度残差网络行人检测模型[J].计算机测量与控制,2018,26(11):277-280,284.
YANG Qirui. An improved deep residual network pedestrian detection model in the field of oilfield security [J]. Computer Measurement & Control, 2018, 26(11): 277-280, 284.
[13]魏文晓,刘洁瑜,徐军辉,等.扩增感受野特征融合的小目标检测算法[J].计算机辅助设计与图形学学报,2023,35(1):48-54.
WEI Wenxiao, LIU Jieyu, XU Junhui, et al. Small target detection algorithm based on feature fusion of expanded Receptive field [J]. Journal of Computer-Aided Design & Computer Graphics, 2023,35 (1): 48-54
[14]张百川,赵佰亭.结合批归一化的轻量化卷积神经网络分类算法[J].哈尔滨商业大学学报(自然科学版),2021,37(3):300-306.
ZHANG Baichuan, ZHAO Baiting. Lightweight convolutional neural network classification algorithm based on batch normalization [J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2021,37 (3): 300-306.
[15]易清明,吕人毅,石敏,等.融合多尺度空洞卷积与反卷积的轻量化目标检测[J].华南理工大学学报(自然科学版),2022,50(12):41-48.
YI Qingming, LÜ Renyi, SHI Min, et al. Lightweight target detection combining multi-scale cavity convolution and deconvolution [J]. Journal of South China University of Technology (Natural Science Edition), 2022,50 (12): 41-48.
[16]GUO M H, LU C Z, HOU Q, et al. SegNeXt: Rethinking convolutional attention design for semantic segmentation[EB/OL]. 2022: arXiv: 2209.08575. https://arxiv.org/abs/2209.08575.
[17]张团善,石玮.噪声干扰下的防羽布疵点检测算法[J].西安工程大学学报,2020,34(1):14-19.
ZHANG Tuanshan, SHI Wei. Anti feather fabric defect detection algorithm under noise interference [J]. Journal of Xi'an Engineering University, 2020,34 (1): 14-19.
[18]王伟,万晓刚.结合注意力机制和特征融合的小目标检测方法[J].西安工程大学学报,2022,36(6):115-123.
WANG Wei, WAN Xiaogang. A Small Target Detection Method Combining Attention Mechanism and Feature Fusion [J]. Journal of Xi'an Engineering University, 2022,36 (6): 115-123.
[19]张浩,齐光磊,侯小刚,等.基于改进Fisher准则的深度卷积生成对抗网络算法[J].光学精密工程,2022,30(24):3239-3249.
ZHANG Hao, QI Guanglei, HOU Xiaogang, et al. Deep convolutional generation adversarial network algorithm based on improved Fisher criterion [J]. Optics and Precision Engineering, 2022,30 (24): 3239-3249
[20] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// IEEE International Conference on Computer Vision. Venice, Italy. IEEE, 2017: 2999-3007.
[21]毛昊,李新利,王孝伟,等.基于多类别Focal Loss损失函数的变电站场景图像语义分割研究[J].华北电力大学学报(自然科学版), 2022,49(5):84-92.
MAO Hao, LI Xinli, WANG Xiaowei, et al. Research on semantic segmentation of substation scene image based on multi category Focal Loss loss function [J]. Journal of North China Electric Power University (Natural Science Edition), 2022,49 (5): 84-92
[22]崔子越,皮家甜,陈勇,等.结合改进VGGNet和Focal Loss的人脸表情识别[J].计算机工程与应用,2021,57(19):171-178.
CUI Ziyue, PI Jiatian, CHEN Yong, et al. Combining Improved VGGNet and Focal Loss for Facial Expression Recognition[J]. Computer Engineering and Applications, 2021,57 (19): 171-178
[23]宋建辉,饶威,于洋,等.基于Focal Loss的多特征融合地物小目标检测[J].火力与指挥控制,2021,46(1):20-24,31.
SONG Jianhui, RAO Wei, YU Yang, et al. Multi feature fusion ground object small target detection based on Focal Loss [J]. Fire Control & Command Control, 2021,46 (1): 20-24,31
[24]王卓,瞿绍军.基于注意力机制与多尺度池化的实时语义分割网络[J/OL].计算机工程:1-11[2023-05-08].DOI:10.19678/j.issn.1000-3428.0065885.
WANG Zhuo, QU Shaojun. Real time semantic segmentation network based on attention mechanism and multi-scale pooling [J/OL]. Computer Engineering: 1-11 [2023-05-08]. DOI: 10.19678/j.issn.1000-3428.0065885
[25]王晓华,叶振兴,王文杰,等. 多级特征融合下的高精度语义分割方法[J].西安工程大学学报,2021,35(5):43-49.
WANG Xiaohua, YE Zhenxing, WANG Wenjie, et al. A high-precision semantic segmentation method based on multi-level feature fusion [J]. Journal of Xi'an Engineering University, 2021,35 (5): 43-49.
|