[1]吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
LÜ Wentao, LIN Qiqi, ZHONG Jiaying. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11): 197-206.
[2]田宸玮, 王雪纯, 杨嘉能, 等. 织物瑕疵检测方法研究进展[J]. 计算机工程与应用, 2020, 56(12): 8-18.
TIAN Chenwei, WANG Xuechun, YANG Jianeng, et al. Research progress on fabric defect detection methods[J]. Computer Engineering and Applications, 2020, 56(12): 8-18.
[3]YIN W, MA Z. High order discriminant analysis based on Riemannian optimization[J]. Knowledge-Based Systems, 2020, 195: 105630.
[4]LU R, CAI Y, ZHU J, et al. Dimension reduction of multimodal data by auto-weighted local discriminant analysis[J]. Neurocomputing, 2021, 461: 27-40.
[5]HU X, SUN Y, GAO J, et al. Probabilistic linear discriminant analysis based on L1-norm and its Bayesian variational inference[J]. IEEE Transactions on Cybernetics, 2020, 52(3): 1616-1627.
[6]CHANG W, NIE F, WANG Z, et al. Self-weighted learning framework for adaptive locality discriminant analysis[J]. Pattern Recognition, 2022, 129: 108778.
[7]YAN C, CHANG X, LUO M, et al. Self-weighted robust LDA for multiclass classification with edge classes[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 12(1): 1-19.
[8]LI C N, QI Y F, ZHAO D, et al. F F-norm two-dimensional linear discriminant analysis and its application on face recognition[J]. International Journal of Intelligent Systems, 2022, 37(11): 8327-8347.
[9]高云龙, 王志豪, 丁柳, 等. 动态加权非参数判别分析[J]. 控制与决策, 2020, 35(8): 1866-1872.
GAO Yunlong,WANG Zhihao, DING Liu, et al. Dynamic weighted nonparametric discriminant analysis[J].Control and Decision, 2020, 35(8): 1866-1872.
[10]陆荣秀, 蔡莹杰, 朱建勇, 等. 基于自权值线性判别分析算法的图像处理研究[J]. 华东交通大学学报, 2020, 37(3): 135-142.
LU Rongxiu, CAI Yingjie, ZHU Jianyong,et al. Application of self-weight linear discriminant analysis in dimension reduction[J]. Journal of East China Jiaotong University, 2020, 37(03): 135-142.
[11]HUANG Libo, LING Yongquan. A parameter-free local linear discriminant analysis method[J]. Computer Science and Application, 2021, 11: 1042.
[12]NIE F, ZHAO X, WANG R, et al. Fast locality discriminant analysis with adaptive manifold embedding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9315-9330.
[13]梁志贞, 张磊. 面向 Kullback-Leibler散度不确定集的正则化线性判别分析[J]. 自动化学报, 2022, 48(4): 1033-1047.
LIANG Zhizhen, ZHANG Lei. Regularized linear discriminant analysis based on uncertainty sets from kullback-leibler divergence[J]. Acta Automatica Sinica, 2022, 48(4): 1033-1047.
[14]YU Y F, REN C X, JIANG M, et al. Sparse approximation to discriminant projection learning and application to image classification[J]. Pattern Recognition, 2019, 96: 106963.
[15]LI Y, LIU B, YU Y, et al. 3E-LDA: Three enhancements to linear discriminant analysis[J]. ACM Transactions on Knowledge Discovery from Data , 2021, 15(4): 1-20.
[16]GAO J, LI L. A robust geometric mean-based subspace discriminant analysis feature extraction approach for image set classification[J]. Optik, 2019, 199: 163368.
[17]ZHENG N, GUO X, TIE Y, et al. Incremental generalized multiple maximum scatter difference with applications to feature extraction[J]. Journal of Visual Communication and Image Representation, 2018, 55: 67-79.
|