[1]GAO M, Liu G, Gao Y, et al. Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions[J]. TrAC Trends in Analytical Chemistry, 2021, 137: 116226.
[2]Cao Y, Chen X, Li X, et al. Tuning surface functionalization and pore structure of UiO-66 metal–organic framework nanoparticles for organic pollutant elimination[J]. ACS Applied Nano Materials, 2021, 4(5): 5486-5495.
[3]董振, 刘亮, 郝艳, 等. 偶氮染料废水处理技术的研究进展[J]. 水处理技术, 2017, 43(4): 6-10.
Dong Zhen, Liu Liang, Hao Yan, et al. Research progress on the treatment of azo dye containing wastewater[J]. Technology of Water Treatment, 2017, 43(4): 6-10.
[4]Mousavi D V, Ahmadipouya S, Shokrgozar A, et al. Adsorption performance of UiO-66 towards organic dyes: Effect of activation conditions[J]. Journal of Molecular Liquids, 2021, 321: 114487.
[5]Wang Y, Wang R, Lin N, et al. Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst[J]. Journal of Colloid and Interface Science, 2021, 594: 446-459.
[6]Cheng X Q, Li S, Bao H, et al. Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 562-573.
[7]Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(1): 1-12.
[8]Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews, 2012, 112(2): 933-969.
[9]Ahmadijokani F, Molavi H, Rezakazemi M, et al. UiO-66 metal–organic frameworks in water treatment: A critical review[J]. Progress in Materials Science, 2022, 125: 100904.
[10]Jiang Y, Liu C, Caro J, et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance[J]. Microporous and Mesoporous Materials, 2019, 274: 203-211.
[11]Lee Y J, Chang Y J, Lee D J, et al. Effective adsorption of phosphoric acid by UiO-66 and UiO-66-NH2 from extremely acidic mixed waste acids: Proof of concept[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 483-486.
[12]Lee J S, You K H, Park C B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene[J]. Advanced Materials, 2012, 24(8): 1084-1088.
[13]Zhang N, Yang M Q, Liu S, et al. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts[J]. Chemical Reviews, 2015, 115(18): 10307-10377.
[14]Han Q, Chen N, Zhang J, et al. Graphene/graphitic carbon nitride hybrids for catalysis[J]. Materials Horizons, 2017, 4(5): 832-850.
[15]周雪剑, 刘嘉辉, 金鑫, 等. UiO-66-NH2 的制备及其光催化降解亚甲基蓝的性能研究[J]. 离子交换与吸附, 2019, 35(6): 541-552.
Zhou Xuejian, Liu Jiahui, Jin Xin, et al. Preparation of UiO-66-NH2 and its photocatalytic activity for degradation of methylene blue [J]. Ion Exchange and Adsorption, 2019, 35(6): 541-552.
[16]Yang J M. A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes[J]. Journal of Colloid and Interface Science, 2017, 505: 178-185.
[17]Nematollahzadeh A, Shojaei A, Karimi M. Chemically modified organic/inorganic nanoporous composite particles for the adsorption of reactive black 5 from aqueous solution[J]. Reactive and Functional Polymers, 2015, 86: 7-15.
[18]赵楠, 邓洪平, 舒谋海. MOF-5负载Pd催化剂的制备及其催化性能初探[J]. 无机化学学报, 2010,26(7): 1213-1217.
Zhao Nan, Deng Hongping, Shu Mouhai. Preparation and catalytic performance of Pd catalyst supported on MOF-5[J]. Chinese Journal of Inorganic Chemistry, 2010,26(7): 1213-1217.
[19]Kandiah M, Usseglio S, Svelle S, et al. Post-synthetic modification of the metal–organic framework compound UiO-66[J]. Journal of Materials Chemistry, 2010, 20(44): 9848-9851.
[20]Valenzano L, Civalleri B, Chavan S, et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory[J]. Chemistry of Materials, 2011, 23(7): 1700-1718.
[21]Shen L, Liang S, Wu W, et al. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr (VI)[J]. Dalton Transactions, 2013, 42(37): 13649-13657.
[22]Jia M, Feng Y, Liu S, et al. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance[J]. Journal of Membrane Science, 2017, 539: 172-177.
[23]Jeon I Y, Choi H J, Jung S M, et al. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(4): 1386-1393.
[24]Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.
[25]Gómez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets[J]. Nano letters, 2007, 7(11): 3499-3503.
[26]Sun L, Yu H, Fugetsu B. Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution[J]. Journal of Hazardous Materials, 2012, 203: 101-110.
[27]Chen Q, He Q, Lv M, et al. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Applied Surface Science, 2015, 327: 77-85.
[28]Luu C L, Van Nguyen T T, Nguyen T, et al. Synthesis, characterization and adsorption ability of UiO-66-NH2[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6(2): 25004.
|