[1]付佳琦,杨瑞华.喷气涡流纺纱技术进程与展望[J].棉纺织技术,2024,52(10):92-96.
FU Jiaqi, YANG Ruihua. Progress and prospect of air jet vortex spinning technology[J]. Cotton Textile Technology, 2024, 52(10): 92-96.
[2] KOMAKI M, MALAKOOTI B. General variable neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem[J]. Production Engineering, 2017, 11(3): 315-329.
[3]潘欣明, 王静安, 邱子峻, 等. 基于改进蚁群算法的色纺企业生产调度方法[J/OL].现代纺织技术,2024:1-12[2024-10-23].http://kns.cnki.net/kcms/detail/33.1249.TS.20240624.0930.002.html.
PAN Xinming, WANG Jing'an,QIU Zijun, et al. Research on production scheduling method of colored textile enterprise based on improve ant colony algorithm[J]. Advanced Textile Technology, 2024:1-12[2024-10-23].http://kns.cnki.net/kcms/detail/33.1249.TS.20240624.0930.002.html.
[4]MA H, SUN C, WANG J, et al. Multisystem optimization for an integrated production scheduling with resource saving problem in textile printing and dyeing[J]. Complexity, 2020, 2020: 8853735.
[5]KRISHNAMOORTHY P, SATHEESH N, SUDHA D, et al. Effective scheduling of multi-load automated guided vehicle in spinning mill: a case study[J]. IEEE Access, 2023, 11: 9389-9402.
[6]高咏珊, 张苏道, 孔维健, 等. 基于遗传算法的细纱接头调度策略[J]. 上海纺织科技, 2022, 50(7): 19-22.
GAO Yongshan, ZHANG Sudao, KONG Weijian, et al. Scheduling strategy of spinning joint based on genetic algorithm[J]. Shanghai Textile Science & Technology, 2022, 50(7): 19-22.
[7]章国政. 基于遗传算法的纺纱车间计划调度优化策略研究[J]. 纺织报告, 2021, 40(2): 36-39.
ZHANG Guozheng. Research on optimal strategy of spinning workshop planning scheduling based on genetic algorithm[J]. Textile Reports, 2021, 40(2): 36-39.
[8]董平军, 俞佳安. 考虑学习—遗忘效应的服装缝制车间生产调度模型[J]. 现代纺织技术, 2023, 31(3): 81-91.
DONG Pingjun, YU Jia'an. Production scheduling model of garment sewing workshop with learning and forgetting effects[J]. Advanced Textile Technology, 2023, 31(3): 81-91.
[9]周亚勤, 王攀, 张朋, 等. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(4): 170-176.
ZHOU Yaqin, WANG Pan, ZHANG Peng, et al. Research on production scheduling method for weft knitting workshops[J]. Journal of Textile Research, 2021, 42(4): 170-176.
[10]LI K, ZHANG H, CHU C, et al. A bi-objective evolutionary algorithm for minimizing maximum lateness and total pollution cost on non-identical parallel batch processing machines[J]. Computers & Industrial Engineering, 2022, 172: 108608.
[11]刘建林, 汪军, 邹专勇. 870 EX型涡流纺纱机优势分析及应用[J]. 纺织器材, 2024, 51(1): 24-26.
LIU Jianlin, WANG Jun, ZOU Zhuanyong. Advantages analysis and application of 870 EX vortex spinning machine[J]. Textile Accessories, 2024, 51(1): 24-26.
[12]雷钧杰, 沈春娅, 胡旭东, 等. 基于NSGAII和神经网络的织造车间大规模调度[J]. 纺织学报, 2023, 44(11): 208-215.
LEI Junjie, SHEN Chunya, HU Xudong, et al. Large-scale scheduling of weaving workshop based on NSGAII and neural network[J]. Journal of Textile Research, 2023, 44(11): 208-215.
[13]EIBEN A E, SMIT S K. Parameter tuning for configuring and analyzing evolutionary algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 19-31.
[14]WANG H, FU Y, HUANG M, et al. A NSGA-II based memetic algorithm for multiobjective parallel flowshop scheduling problem[J]. Computers & Industrial Engineering, 2017, 113: 185-194.
[15]黄学文, 陈绍芬, 周阗玉, 等. 求解柔性作业车间调度的遗传算法综述[J]. 计算机集成制造系统, 2022, 28(2): 536-551.
HUANG Xuewen, CHEN Shaofen, ZHOU Tianyu, et al. Survey on genetic algorithms for solving flexible job-shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2022, 28(2): 536-551.
[16]牟健慧, 段培永, 高亮, 等. 基于混合遗传算法求解分布式流水车间逆调度问题[J]. 机械工程学报, 2022, 58(6): 295-308.
MU Jianhui, DUAN Peiyong, GAO Liang, et al. Hybrid genetic algorithm for distributed flow shop inverse scheduling problem[J]. Journal of Mechanical Engineering, 2022, 58(6): 295-308.
[17]沈春娅, 方辽辽, 彭来湖, 等. 基于自适应模拟退火算法的整经准备车间排产模型[J]. 纺织学报, 2024, 45(3): 81-86.
SHEN Chunya, FANG Liaoliao, PENG Laihu, et al. Production scheduling of warping department based on adaptive simulated annealing algorithm[J]. Journal of Textile Research, 2024, 45(3): 81-86.
[18]AKRAM K, KAMAL K, ZEB A. Fast simulated annealing hybridized with quenching for solving job shop scheduling problem[J]. Applied Soft Computing, 2016, 49: 510-523.
|