[1]杜汐然, 王雪旸, 朱斌. 个人辐射制冷织物的研究进展[J]. 激光与光电子学进展, 2023, 60(13): 81-87.
DU X R, WANG X Y, ZHU B. Personal radiative cooling textile generation[J]. Laser & Optoelectronics Progress, 2023, 60(13): 81-87.
[2]HUANG M C, XUE C H, HUANG J, et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling[J]. Chemical Engineering Journal, 2022, 442: 136239.
[3]蔡晨阳, 丁春香, 武小丹, 等. 生物质纤维素基日间辐射制冷材料的研究进展[J]. 复合材料学报, 2024, 41(11): 5800-5811.
CAI C Y, DING C X, WU X D, et al. Research progress of biomass cellulose based daytime radiative cooling materials[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5800-5811.
[4]CHENG X, CAI J, LIU P, et al. Multifunctional flexible MXene/AgNW composite thin film with ultrahigh conductivity enabled by a sandwich-structured assembly strategy[J]. Small, 2024, 20(3): 2304327.
[5]HUANG M C, YANG M, GUO X J, et al. Scalable multifunctional radiative cooling materials[J]. Progress in Materials Science, 2023, 137: 101144.
[6]ZHANG D, ZHANG H, XU Z, et al. Recent advances in electrospun membranes for radiative cooling[J]. Materials, 2023, 16(10): 3677.
[7]程喜慧, 陈萌, 窦跃杰, 等. 辐射制冷功能纺织品的研究进展[J]. 毛纺科技, 2024, 52(3): 132-137.
CHENG X H, CHEN M, DOU Y J, et al. Research progress of textiles with radiative cooling performance[J]. Wool Textile Journal, 2024, 52(3): 132-137.
[8]ZHANG Y, YU J. In situ formation of SiO2 nanospheres on common fabrics for broadband radiative cooling[J]. ACS Applied Nano Materials, 2021, 4(10): 11260-11268.
[9]QI G, TAN X, TU Y, et al. Ordered-porous-array polymethyl methacrylate films for radiative cooling[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31277-31284.
[10]CAI C, CHEN F, WEI Z, et al. Large scalable, anti-ultraviolet, strong cellulose film with well-defined dual-pores for longtime daytime radiative cooling[J]. Chemical Engineering Journal, 2023, 476: 146668.
[11]YUE Q, ZHANG L, HE C Y, et al. Polymer composites with hierarchical architecture and dielectric particles for efficient daytime subambient radiative cooling[J]. Journal of Materials Chemistry A, 2023, 11(6): 3126-3135.
[12]QIN M, HAN H, XIONG F, et al. Vapor exchange induced particles-based sponge for scalable and efficient daytime radiative cooling[J]. Advanced Functional Materials, 2023, 33(44): 2304073.
[13]DU Y, WANG W, MEI J, et al. Silica-bridged inorganic-organic hybrid membrane for efficient daytime radiative cooling[J]. Chemical Engineering Journal, 2024, 485: 149976.
[14]ZHANG Q, XUE T, LU Y, et al. Fluorine-containing polyimide nanofiber membranes for durable and anti-aging daytime radiative cooling[J]. Journal of Materials Science & Technology, 2024, 179: 166-173.
[15]FAN C, LONG Z, ZHANG Y, et al. Robust integration of energy harvesting with daytime radiative cooling enables wearing thermal comfort self-powered electronic devices[J]. Nano Energy, 2023, 116: 108842.
[16]GU B, XU Q, WANG H, et al. A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments[J]. ACS Nano, 2023, 17(18): 18308-18317.
[17]CAI W, LIN B, QI L, et al. Bio-based and fireproof radiative cooling aerogel film: Achieving higher sustainability and safety[J]. Chemical Engineering Journal, 2024, 488: 150784.
[18]WU S, JIAN R, ZHOU L, et al. Eggshell biowaste-derived flexible and self-cleaning films for efficient subambient daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2023, 15(38): 44820-44826.
[19]XIANG B, ZHANG R, LUO Y, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling [J]. Nano Energy, 2021, 81: 105600.
[20]XUE C H, WEI R X, GUO X J, et al. Fabrication of superhydrophobic P(VDF-HFP)/SiO2 composite film for stable radiative cooling[J]. Composites Science and Technology, 2022, 220: 109279.
[21]XU J, WU X, LI Y, et al. High-performance radiative cooling sunscreen[J]. Nano Letters, 2024, 24(47): 15178-15185.
[22]ZHANG K, MO C, TANG X, et al. Hierarchically porous cellulose-based radiative cooler for zero-energy food preservation[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7745-7754.
[23]JING W, ZHANG S, ZHANG W, et al. Scalable and flexible electrospun film for daytime subambient radiative cooling[J]. ACS Applied Materials & Interfaces, 2021.
[24]LIU X, LI Y, PAN Y, et al. A shish-kebab superstructure film for personal radiative cooling[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 17188-17194.
[25]LI L, LIU G, ZHANG Q, et al. Porous structure of polymer films optimized by rationally tuning phase separation for passive all-day radiative cooling[J]. ACS Applied Materials & Interfaces, 2024, 16(5): 6504-6512.
[26]LI X, PATTELLI L, DING Z, et al. A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling[J]. Advanced Functional Materials, 2024, 34(23): 2315315.
[27]SHI M, SONG Z, NI J, et al. Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating[J]. ACS Nano, 2023, 17(3): 2029-2038.
[28]RAMAN A P, ANOMA M A, ZHU L, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.
[29]XIE A Q, ZHU L, LIANG Y, et al. Fiber-spinning asymmetric assembly for Janus-structured bifunctional nanofiber films towards all-weather smart textile[J]. Angewandte Chemie (International Ed), 2022, 61(40): e202208592.
[30]HU Z, QIU Y, ZHOU J, et al. Smart flexible porous bilayer for all-day dynamic passive cooling[J]. Small Science, 2024, 4(3): 2300237.
[31]GUO Y. Three-layered films enable efficient passive radiation cooling of buildings[J]. e-Polymers, 2024, 24(1): 20240071.
[32]MAO M, FENG C, PEI J, et al. A triple-layer membrane with hybrid evaporation and radiation for building cooling[J]. Energies, 2023, 16(6): 2750.
[33]YUE X, ZHANG T, YANG D, et al. A robust Janus fibrous membrane with switchable infrared radiation properties for potential building thermal management applications[J]. Journal of Materials Chemistry A, 2019, 7(14): 8344-8352.
[34]LI J, JIANG Y, LIU J, et al. A photosynthetically active radiative cooling film[J]. Nature Sustainability, 2024, 7(6): 786-795.
[35]ZOU H, WANG C, YU J, et al. Solar spectrum management and radiative cooling film for sustainable greenhouse production in hot climates[J]. Science Bulletin, 2023, 68(14): 1493-1496.
[36]LIANG D, REN J, LIU H, et al. Efficient strategy for radiative cooling based on ultra-broad-band infrared regulation of flexible bilayer film[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 54875-54885.
[37]LEI X, ZHU K, LIU H, et al. Eco-friendly packaging film with integrated functions of high-efficiency radiation cooling and sustained-release antimicrobial activity[J]. Chemical Engineering Journal, 2024, 496: 153430. |