"[1] 施倩, 罗戎蕾. 基于生成对抗网络的服装图像生成研究进展[J]. 现代纺织技术, 2023, 31(2): 36-46.
SHI Q, LUO R L. Research progress of clothing image generation based on Generative Adversarial Networks[J]. Advanced Textile Technology, 2023, 31(2): 36-46.
[2] 阮艳雯,施雨荷,顾力文,等. 人机交互感知对虚拟试衣体验满意度的影响[J].丝绸,2023,60(5):87-96.
RUAN Y W, SHI Y H, GU L W, et al. Influence of human-computer interaction perception on the satisfaction of virtual fitting experience[J]. Journal of Silk, 2023,60(5): 87-96.
[3] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 10684-10695.
[4] MORELLI D, BALDRATI A, CARTELLA G, et al. LaDI-VTON: latent diffusion textual-inversion enhanced virtual try-on[C]//Proceedings of the 31st ACM International Conference on Multimedia. Ottawa ON, Canada. ACM, 2023: 8580-8589.
[5] ZHU L, YANG D, ZHU T, et al. TryOnDiffusion: a tale of two UNets[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver, BC, Canada. IEEE, 2023: 4606-4615.
[6] GOU J, SUN S, ZHANG J, et al. Taming the power of diffusion models for high-quality virtual try-on with appearance flow[C]//Proceedings of the 31st ACM International Conference on Multimedia. Ottawa ON, Canada. ACM, 2023: 7599-7607.
[7] 赵娟, 魏雪霞, 徐增波. 基于深度学习的2D虚拟试衣技术研究进展[J]. 丝绸, 2021, 58(9): 48-52.
ZHAO J, WEI X X, XU Z B. Research progress of 2D virtual fitting technology based on deep learning[J]. Journal of Silk, 2021, 58(9): 48-52.
[8] 柳思雨. 基于流变换的虚拟试穿方法研究[D]. 杭州: 杭州电子科技大学, 2024.
LIU S Y. Research on virtual try-on method based on flow[D]. Hangzhou: Hangzhou Dianzi University, 2024.
[9] BOOKSTEIN F L. Principal warps: Thin-plate splines and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(6): 567-585.
[10] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[EB/OL]. 2015: 1506.02025. https://arxiv.org/abs/1506.02025v3.
[11] ZHANG L, RAO A, AGRAWALA M. Adding conditional control to text-to-image diffusion models[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France. IEEE, 2023: 3813-3824.
[12] 郭宇轩, 孙林. 基于扩散模型的ControlNet网络虚拟试衣研究[J]. 现代纺织技术, 2024, 32(3): 118-128.8.
GUO Y X, SUN L. Virtual fitting research based on the diffusion model and ControlNet network[J]. Advanced Textile Technology, 2024, 32(3): 118-128.
[13] GE Y, SONG Y, ZHANG R, et al. Parser-free virtual try-on via distilling appearance flows[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 8481-8489.
[14] SUN D, ROTH S, BLACK M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International Journal of Computer Vision, 2014, 106(2): 115-137.
[15] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning. New York, NY: ACM, 2021: 8748-8763.
[16] CHOI S, PARK S, LEE M, et al. VITON-HD: high-resolution virtual try-on via misalignment-aware normalization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 14126-14135. " |