"[1]JI D, LIN Y, GUO X, et al. Electrospinning of nanofibers [J]. Nature Reviews Methods Primers, 2024, 4:2.
[2]苏芳芳, 经渊, 宋立新, 等. 我国静电纺丝领域研究现状及其热点:基于CNKI数据库的可视化文献计量分析[J]. 东华大学学报(自然科学版), 2024,50(1):45-54.
SU F F, JING Y, SONG L X, et al. Present situation and hotspot of electrospinning in China: Visual bibliometric analysis based on CNKI database [J]. Journal of Donghua University (Natural Science), 2024,50(1):45-54.
[3]POLAT K, BURSALI E A, YURDAKOÇ M. ZnO/PMMA nanofibers for the photocatalytic water remediation [J]. Journal of Cluster Science, 2025, 36(1): 1-11.
[4]SI R, CHEN Y, WANG D, et al. Nanoarchitectonics for high adsorption capacity carboxymethyl cellulose nanofibrils-based adsorbents for efficient Cu2+ removal [J]. Nanomaterials, 2022, 12(1): 160.
[5]CHANG C, GUAN X, WANG P, et al. Electrically and thermally conductive Al2O3/C nanofiber membrane filled with organosilicon as a multifunctional integrated interlayer for lithium-sulfur batteries under lean-electrolyte and thermal gradient [J]. Chemical Engineering Journal, 2022, 442: 135825.
[6]岳欣琰,洪剑寒.一维结构可穿戴柔性传感器研究进展 [J].现代纺织技术,2024,32(2):27-39.
YUE X Y, HONG J H. Research progress on wearable flexible sensors with one-dimensional structure [J]. Advanced Textile Technology, 2024, 32(2): 27-39.
[7]CHATTERJEE A, DEOPURA B L. Carbon nanotubes and nanofibre: An overview [J]. Fibers and Polymers, 2002, 3(4): 134-139.
[8]HE M, LI A, ZHENG M, et al. Shape-controllable nanofiber core-spun yarn for multifunctional applications [J]. Advanced Fiber Materials, 2024, 6(4): 1138-1151.
[9]MISHRA R K, MISHRA P, VERMA K, et al. Electrospinning production of nanofibrous membranes [J]. Environmental Chemistry Letters, 2019, 17(2): 767-800.
[10]SMIT E, BŰTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers [J]. Polymer, 2005, 46(8): 2419-2423.
[11]WANG X, ZHANG K, ZHU M, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method [J]. Polymer, 2008, 49(11): 2755-2761.
[12]PAN H, LI L, HU L, et al. Continuous aligned polymer fibers produced by a modified electrospinning method [J]. Polymer, 2006, 47(14): 4901-4904.
[13]WEI L, QIN X. Nanofiber bundles and nanofiber yarn device and their mechanical properties: A review [J]. Textile Research Journal, 2016, 86(17): 1885-1898.
[14]WANG X, ZHOU X, ZHAO X, et al. Electric field simulation, structure and properties of nanofiber- coated yarn prepared by multi-needle water bath electrospinning [J]. Nanotechnology, 2024, 36(1). DOI: 10.1088/1361-6528/ad8422.
[15]WU H, YU Y, YU Y, et al. A facile method for continuous production of temperature-adaptive hyperthermal management core-sheath polyurethane nanofiber yarns based on vanadium dioxide toward commercialization [J]. Journal of Energy Storage, 2024, 86: 111311.
[16]ZHOU Y, WANG H, HE J, et al. Highly stretchable nanofiber-coated hybrid yarn with wavy structure fabricated by novel airflow-electrospinning method [J]. Materials Letters, 2019, 239: 1-4.
[17]ZHOU M, XU F, MA L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems [J]. Nano Energy, 2022, 104: 107885.
[18]CHEN Y, HUA J, LING Y, et al. An airflow-driven system for scalable production of nano-microfiber wrapped triboelectric yarns for wearable applications [J]. Chemical Engineering Journal, 2023, 477: 147026.
[19]LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors [J]. ACS Nano, 2023, 17(6): 5211-5295.
[20]HUANG L, WANG S, ZHANG K, et al. Research progress of multifunctional flexible proximity sensors [J]. Sensors and Actuators A: Physical, 2023, 360: 114500.
[21]MISHRA R B, EL-ATAB N, HUSSAIN A M, et al. Recent progress on flexible capacitive pressure sensors: From design and materials to applications [J]. Advanced Materials Technologies, 2021, 6(4): 2001023.
[22]YOU X, HE J, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli [J]. Journal of Materials Chemistry C, 2018, 6(47): 12981-12991.
[23]HAN X, FAN M, YUE X, et al. Linear flexible capacitive sensor with double helix structure based on multi-needle water-bath electrospinning technology [J]. Smart Materials and Structures, 2023, 32(3): 035012.
[24]殷霞,张士进,田明伟,等.电阻式柔性触觉传感器的研究与医养健康领域应用现状[J].丝绸,2024,61(2):76-84.
YIN X, ZHANG S J, TIAN M W, et al. Research on resistive flexible tactile sensors and their current applications in the field of medical and health care [J]. Journal of Silk. 2024, 61(2): 76-84.
[25]SHU Q, PANG Y, LI Q, et al. Flexible resistive tactile pressure sensors [J]. Journal of Materials Chemistry A, 2024, 12(16): 9296-9321.
[26]NAN N, HE J, YOU X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics [J]. Advanced Materials Technologies, 2019, 4(3): 1800338.
[27]QI K, WANG H, YOU X, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity [J]. Journal of Colloid and Interface Science, 2020, 561: 93-103.
[28]UZABAKIRIHO P C, WANG M, WANG K, et al. High-strength and extensible electrospun yarn for wearable electronics [J]. ACS Applied Materials & Interfaces, 2022, 14(40): 46068-46076.
[29]NIU B, ZHAI Z, YU S, et al. Preparation of MOF-199/polyacrylonitrile nanofiber membrane and its application in the preparation of flexible VOC gas sensors [J]. Microchemical Journal, 2023, 191: 108815.
[30]周筱雅,马定海,胡铖烨,等.涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用 [J].纺织学报,2022,43(2):110-115.
ZHOU X Y, MA D H, HU C Y, et al. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(2): 110-115.
[31]高玥,陶庆云,孟粉叶,等.编织芯鞘型摩擦发电传感纱的结构参数对其性能的影响 [J].现代纺织技术,2024,32(7):1-12.
GAO Y, TAO Q Y, MENG F Y, et al. Influence of structural parameters on the performance of braided core-sheath triboelectric sensing yarns [J]. Advanced Textile Technology, 2024, 32(7):1-12.
[32]CHENG T, SHAO J, WANG Z L. Triboelectric nanogenerators[J]. Nature Reviews Methods Primers, 2023, 3: 39.
[33]陈国策,沈华,谢承博,等.用于人体运动监测的柔性摩擦发电传感纱的研发及其性能[J/OL].现代纺织技术, 2025,1-12.(2025-03-20).
CHEN G C, SHEN H, XIE C B, et al. Development and performance of flexible triboelectric sensor yarns for human motion monitoring [J/OL]. Advanced Textile Technology, 2025, 1-12.(2025-03-20).
[34]SONG W Z, WANG X X, QIU H J, et al. Sliding non-contact inductive nanogenerator [J]. Nano Energy, 2019, 63: 103878.
[35]YU Z, ZHU Z, WANG Y, et al. Wearable cotton fabric-based single-electrode-mode triboelectric nanogenerator for self-powered human motion monitoring [J]. Cellulose, 2023, 30(8): 5355-5371.
[36]XU Z, CHEN L, ZHANG Z, et al. Durable roller-based swing-structured triboelectric nanogenerator for water wave energy harvesting [J]. Small, 2024, 20(15): 2307288.
[37]JIANG H, ZHANG R, LIU K, et al. Wet-adaptive strain sensor based on hierarchical core-sheath yarns for underwater motion monitoring and energy harvesting [J]. Nano Energy, 2024, 132: 110407.
[38]DAVIES D K. Charge generation on dielectric surfaces [J]. Journal of Physics D: Applied Physics, 1969, 2(11): 1533." |