[1] |
郝立才, 肖红, 刘卫, 等. 防热红外侦视纺织品的研究进展[J]. 纺织学报, 2014, 35(7):158-164.
|
|
He Licai, XIAO Hong, LIU Wei, et al. Research development of thermal infrared camouflage textiles[J]. Journal of Textile Research, 2014, 35(7): 158-164.
|
[2] |
胡杰, 路远, 侯典心, 等. 红外伪装技术研究进展[J]. 激光与红外, 2018, 48(7):803-808.
|
|
HU Jie, LU Xuan, HOU Dianxin, et al. Research progress of infrared camouflage technology[J]. LASER & INFRARED, 2018, 48(7): 803-808.
|
[3] |
LU J H, WANG R F. The implementation method and the development tendency of infrared stealth technology[P]. Applied Optics and Photonics China, 2015, 9674(1): 1-4.
|
[4] |
寿霜霜, 田伟, 祝成炎. 基于灰度评价的织物热红外辐射性能调控研究[J]. 现代纺织技术, 2019, 27(3):43-49.
|
|
SHOU Shuangshuang, TIAN Wei, ZHU Chengyan, et al. Study on regulation of thermal infrared radiation performance of fabrics based on gray scale evaluation[J]. Advanced Textile Technology, 2019, 27(3): 43-49.
|
[5] |
孙振华, 马建伟. 用于芳纶纤维化学镀银的表面改性研究进展[J]. 产业用纺织品, 2019, 37(10):1-6.
|
|
SUN Zhenhua, MA Jianwei. Research progress on surface modification for electroless silver plating of aramid fibers[J]. Technical Textiles, 2019, 37(10): 1-6.
|
[6] |
CHU H T, ZHANG Z C, LIU Y J, et al. Silver particles modified carbon nanotube paper/glassfiber reinforced polymer composite material for high temperature infrared stealth camouflage[J]. Carbon, 2016, 98:557-566.
DOI
URL
|
[7] |
许辉, 汪牡丹, 涂进春, 等. SiO2气凝胶对复合隔热涂料性能的影响[J]. 材料导报, 2013, 27(14):100-103.
|
|
XU Hui, WANG Mudan, XU Jinchun, et al. Effect of SiO2 aerogel on the performance of composite insulation coating[J]. MATERIALS REPORTS, 2013, 27(14): 100-103.
|
[8] |
姜小青. 二氧化硅气凝胶的研究进展[J]. 精细与专用化学品, 2020, 28(9):42-46.
|
|
JIANG Xiaoqing. Research progress of silica aerogel[J]. Fine and Specialty Chemicals, 2020, 28(9): 42-46.
|
[9] |
刘国熠, 刘元军, 赵晓明. SiO2气凝胶含量对单层涂层柔性复合材料热防护性能的影响[J]. 纺织科学与工程学报, 2019, 36(1):102-105.
|
|
LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. Influence of SiO2 aerogel content on the thermal protective performance of single-layer coating flexible composites[J]. Journal of Textile Science and Engineering, 2019, 36(1): 102-105.
|
[10] |
薛峰, 强春媚, 于美, 等. 纳米氧化亚镍/玻璃微球复合粒子的制备及表征[J]. 复合材料学报, 2008, 25(1):100-104.
|
|
XUE Feng, QIANG Chunmei, YU Mei, et al. Preparation and characterization of nano NiO/hollow glass sphere composite particles[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 100-104.
|
[11] |
赵俊锋, 陈建华. 纳米红外吸波材料的研究进展[J]. 化工新型材料, 2009, 37(7):8-9.
|
|
ZHAO Junfeng, CHEN Jianhua. Research progress of the infrared absorbing nano materials[J]. NEW CHEMICAL MATERIALS, 2009, 37(7): 8-9.
|
[12] |
张文娟, 纪峰, 张瑞云, 等. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019, 40(1):67-72.
|
|
ZHANG Wenjuan, JI Feng, ZHANG Ruiyun, et al. Study on relationship between capillary characteristics and moisture permeability of wool fabrics[J]. Journal of Textile Research, 2019, 40(1): 67-72.
|
[13] |
翁小霞, 王泉, 邵灵达, 等. 机织物结构设计及其红外隐身性能的研究[J]. 丝绸, 2020, 57(7):31-36.
|
|
WENG Xiaoxia, Wang Quan, SHAO Lingda, et al. Research on the design of woven fabric structure and its infrared stealth performance[J]. Journal of Silk, 2020, 57(7): 31-36.
|
[14] |
韩晓果, 贾明皓, 周红涛, 等. 气流冲击下的紧密织物动态透气性能分析[J]. 服装学报, 2019, 4(5):377-382.
|
|
HAN Xiaoguo, JIA Minghao, ZHOU Hongtao, et al. Analysis on dynamic permeability of tight woven fabrics under air impact[J]. Journal of Clothing Research, 2019, 4(5): 377-382.
|
[15] |
张雨哲, 卞婷婷, 张奕, 等. GMA改性纳米SiO2及其增韧环氧树脂的研究[J]. 常州大学学报, 2019, 31(2):8-18.
|
|
ZHANG Yuzhe, BIAN Tingting, ZHANG Yi, et al. GMA modified nano-silica and research of toughening epoxy resin[J]. Journal of Changzhou University, 2019, 31(2): 8-18.
|
[16] |
熊联明. 偶联剂的生产与应用[M]. 北京: 化学工业出版社, 2017:10-11.
|
|
XIONG Lianming. Production and Application of Coupling Agent[M]. Beijing: Chemical Industry Press, 2017: 10-11.
|
[17] |
翟美红, 王昊利, 赵攀杰. 不同粒径微米/亚微米颗粒布朗运动的实验研究[J]. 中国计量学院学报, 2014, 25(3):291-295.
|
|
ZHAI Meihong, WANG Haoli, ZHAO Panjie. Study on the Brownian motion of micro/sub-micro particles with different diameters[J]. Journal of China University of Metrology, 2014, 25(3): 291-295.
|
[18] |
CHOWDHURY D. 100 Years of einstein's theory of brownian motion: From pollen grains to protein trains[J]. Resonance, 2005, 10(9): 63-78.
|