现代纺织技术 ›› 2022, Vol. 30 ›› Issue (2): 1-8.DOI: 10.19398/j.att.202105030
• 综合评述 • 下一篇
严小飞1,2, 方杰1, 朱晨凯1,2, 李家炜1, 祝成炎1, 戚栋明1,2()
收稿日期:
2021-05-22
出版日期:
2022-03-10
网络出版日期:
2021-08-03
通讯作者:
戚栋明,E-mail: dongmingqi@zstu.edu.cn作者简介:
严小飞(1988-),男,陕西宝鸡人,讲师,主要从事功能纤维及复合材料制备方面的研究。
基金资助:
YAN Xiaofei1,2, FANG Jie1, ZHU Chenkai1,2, LI Jiawei1, ZHU Chengyan1, QI Dongmin1,2()
Received:
2021-05-22
Published:
2022-03-10
Online:
2021-08-03
摘要:
为进一步推动MXene (Ti3C2Tx)在纺织领域中功能化和智能化方面的应用,结合国内外相关文献,着重介绍MXene的制备方法,包括HF腐蚀法、原位产生HF腐蚀法、熔融盐法、电化学法、浓碱法等;详细综述了MXene在纺织领域的力学、电学、阻燃抑烟、储能等方面的研究进展;总结了MXene在以纺织油墨、纤维、涂层等为载体的智能织物和柔性传感器等应用中的优异性能。最后指出了MXene在树脂基体中分散性较差,在空气中易被氧化和使用耐久性等不足及其未来发展方向。
中图分类号:
严小飞, 方杰, 朱晨凯, 李家炜, 祝成炎, 戚栋明. 二维材料MXene(Ti3C2Tx)的制备、性能及其在纺织领域中的应用[J]. 现代纺织技术, 2022, 30(2): 1-8.
YAN Xiaofei, FANG Jie, ZHU Chenkai, LI Jiawei, ZHU Chengyan, QI Dongmin. Preparation and properties of two-dimensional material MXene (Ti3C2Tx)and Its application in textile field[J]. Advanced Textile Technology, 2022, 30(2): 1-8.
[1] |
NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. MXenes: A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
DOI URL |
[2] |
SHARMA G, MUTHUSWAMY E, NAGUIB M, et al. Calorimetric study of alkali metal Ion (K+, Na+, Li+)exchange in a clay-like MXene[J]. Journal of Physical Chemistry C, 2017, 121(28):15145-15153.
DOI URL |
[3] | 丁小惠, 李春虎, 王文泰, 等. 磁性光催化剂TiO2/Ti3C2/Fe3O4的制备及光催化Fenton降解苯胺[J]. 中国海洋大学学报(自然科学版), 2019, 49(12):67-74. |
DING Xiaohui, LI Chunhu, WANG Wentai, et al. Preparation of TiO2/Ti3C2/Fe3O4 magnetic photocatalytst and the photocatalytic degradation of aniline[J]. Periodical of Ocean University of China, 2019, 49(12):67-74. | |
[4] |
SHARMA G, NAGUIB M, FENG D, et al. Calorimetric determination of thermodynamic stability of MAX and MXene phases[J]. The Journal of Physical Chemistry C, 2016, 120(49):28131-28137.
DOI URL |
[5] |
SHI Y, LIU C, DUAN Z, et al. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety[J]. Chemical Engineering Journal, 2020, 399:125829.
DOI URL |
[6] | 秦文峰, 符佳伟, 刘国春, 等. Ti3C2Tx MXene负载玻璃纤维材料制备与电磁屏蔽性能[J]. 稀有金属材料与工程, 2020, 49(11):3896-3901. |
QIN Wenfeng, FU Jiawei, LIU Guochun, et al. Preparation and electromagnetic shielding properties of Ti3C2Tx MXene/glass fiber composites[J]. Rare Metal Materials and Engineering, 2020, 49(11):3896-3901. | |
[7] |
BOOTA M, GOGOTSI Y. MXene-conducting polymer asymmetric pseudocapacitors[J]. Advanced Energy Materials, 2019, 9(7):1802917.
DOI URL |
[8] |
MAYERBERGER E A, URBANEK O, MCDANIEL R M, et al. Preparation and characterization of polymer-Ti3C2Tx (MXene)composite nanofibers produced via electrospinning[J]. Journal of Applied Polymer Science, 2017, 134(37):45295.
DOI URL |
[9] |
GUND G S, PARK J H, HARPALSINH R, et al. MXene/polymer hybrid materials for flexible ac-filtering electrochemical capacitors[J]. Joule, 2019, 3(1):164-176.
DOI URL |
[10] |
NAGUIB M, SAITO T, LAI S, et al. Ti3C2Tx(MXene)-polyacrylamide nanocomposite films[J]. RSC Advances, 2016, 6(76):72069-72073.
DOI URL |
[11] |
GAO L, LI C, HUANG W, et al. MXene/polymer membranes: Synjournal, properties, and emerging applications[J]. Chemistry of Materials, 2020, 32(5):1703-1747.
DOI URL |
[12] |
YAN J, REN C E, HATTER C, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30):1701264.
DOI URL |
[13] |
NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43):15966-15969.
DOI URL |
[14] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes)for energy storage[J]. Nature Reviews Materials, 2017, 2:16098.
DOI URL |
[15] | 康瑞洋, 张振宇, 郭梁超, 等. Ti3C2 MXene填充环氧树脂复合材料摩擦学性能研究[J]. 硬质合金, 2019, 36(3):213-220. |
KANG Ruiyang, ZHANG Zhenyu, GUO Liangchao, et al. Study on the tribological property of epoxy composites filled with Ti3C2 MXene[J]. Cemented Carbide, 2019, 36(3):213-220. | |
[16] |
MICHAEL N, MURAT K, VOLKER P, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
DOI URL |
[17] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
DOI URL |
[18] | FENG A, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Materials & Design, 2017, 114:161-166. |
[19] |
LI T, YAO L, LIU Q, et al. Fluorine-free synjournal of high-purity Ti3C2Tx (T=OH, O)via alkali treatment[J]. Angewandte Chemie, 2018, 130(21):6223-6227.
DOI URL |
[20] |
NAGUIB M, PRESSER V, TALLMAN D, et al. On the topotactic transformation of Ti2AlC into a Ti-C-O-F cubic phase by heating in molten lithium fluoride in air[J]. Journal of the American Ceramic Society, 2011, 94(12):4556-4561.
DOI URL |
[21] |
SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 2020, 30(12):1910504.
DOI URL |
[22] |
TALOUB N, HENNICHE A, LIU L, et al. Improving the mechanical properties, UV and hydrothermal aging resistance of PIPD fiber using MXene (Ti3C2(OH)2)nanosheets[J]. Composites Part B: Engineering, 2019, 163:260-271.
DOI URL |
[23] |
CHEN L, CAO Y, GUO X, et al. Simultaneously improved thermal and dielectric performance of epoxy composites containing Ti3C2Tx platelet fillers[J]. Polymers, 2020, 12(7):1608.
DOI URL |
[24] |
SONG P, QIU H, WANG L, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance[J]. Sustainable Materials and Technologies, 2020, 24:e00153.
DOI URL |
[25] |
PAN Y, FU L, ZHOU Q, et al. Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene)[J]. Polymer Composites, 2020, 41(1):210-218.
DOI URL |
[26] |
HUANG H, DONG D, LI W, et al. Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid)composites[J]. Chinese Journal of Chemical Engineering, 2020, 28(7):1981-1993.
DOI URL |
[27] |
MASHTALIR O, LUKATSKAYA M R, ZHAO M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices[J]. Advanced Materials, 2015, 27(23):3501-3506.
DOI URL |
[28] |
XIONG D, LI X, BAI Z, LU S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small, 2018, 14(17):1703419.
DOI URL |
[29] |
QIN L, TAO Q, LIU X, et al. Polymer-MXene composite films formed by MXene-facilitated electro-chemical polymerization for flexible solid-state microsu-percapacitors[J]. Nano Energy, 2019, 60:734-742.
DOI URL |
[30] |
WU X, HUANG B, LV R, et al. Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene[J]. Chemical Engineering Journal, 2019, 378:122246.
DOI URL |
[31] |
ABBAS A M, BAPAN A, SAMRAT M. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications[J]. Chemistry of Materials, 2020, 32(24):10296-10320.
DOI URL |
[32] |
UZUN S, SCHELLING M, HANTANASIRISAKUL K, et al. Additive-free aqueous MXene inks for thermal inkjet printing on textiles[J]. Small, 2021, 17(1):2006376.
DOI URL |
[33] |
ZHANG C J, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10:1795.
DOI URL |
[34] |
CAO W T, MA C, MAO D S, et al. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles[J]. Advanced Functional Materials, 2019, 29(51):1905898.
DOI URL |
[35] |
KAUSHIK V, LEE J, HONG J, et al. Textile-based electronic components for energy applications: Principles, problems, and perspective[J]. Nanomaterials, 2015, 5(3):1493-1531.
DOI URL |
[36] |
ISMAR E, BAHADIR S K, KALAOGLU F, et al. Futuristic clothes: Electronic textiles and wearable tech-nologies[J]. Global Challenges, 2020, 4(7):1900092.
DOI URL |
[37] | LIU R, LI J, LI M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear[J]. ACS Applied Materials & Interfaces, 2020, 12(41):46446-46454. |
[38] |
LEVITT A, ZHANG J Z, DION G, et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices[J]. Advanced Functional Materials, 2020, 30(47):2000739.
DOI URL |
[39] |
SEYEDIN S, ZHANG J, USMAN K, et al. Facile solution processing of stable MXene dispersions towards conductive composite fibers[J]. Global Challenges, 2019, 3(10):1900037.
DOI URL |
[40] | 李一飞, 郑敏, 常朱宁子, 等. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(6):120-127. |
LI Yifei, ZHENG Min, CHANGZHU Ningzi, et al. Cotton knitted fabrics treated with two-dimensional transi-tional metal carbide Ti3C2Tx and property analysis[J]. Journal of Textile Research, 2021, 42(6):120-127. | |
[41] |
WANG S, LI D, ZHOU Y, et al. Hierarchical Ti3C2TxMXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption[J]. ACS Nano, 2020, 14(7):8634-8645.
DOI URL |
[42] |
WANG S, DU X, LUO Y, et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics[J]. Chemical Engineering Journal, 2021, 408:127363.
DOI URL |
[43] |
SEYEDIN S, YANZA E, RAZAL J M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets[J]. Journal of Materials Chemistry A, 2017, 5(46):24076-24082.
DOI URL |
[44] |
YAN J, MA Y, ZHANG C, et al. Polypyrrole-MXene coated textile-based flexible energy storage device[J]. RSC Advances, 2018, 8(69):39742-39748.
DOI URL |
[45] |
WANG Y, QI Q, FAN J, et al. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation[J]. Separation and Purification Technology 2021, 254:117615.
DOI URL |
[46] |
RAAGULAN K, BRAVEENTH R, JANG H J, et al. Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric[J]. Materials, 2018, 11(10):1803.
DOI URL |
[1] | 贺显伟. 色彩经济时代纺织品创新设计中的色彩策略[J]. 现代纺织技术, 2022, 30(2): 113-117. |
[2] | 李雪梅, 刘亚楠, 祝成炎, 金肖克, 王浙峰, 张红霞. 负载核壳结构维生素E纳米颗粒的粘胶纱交织物性能研究[J]. 现代纺织技术, 2022, 30(2): 127-133. |
[3] | 俞凌晓, 吕汪洋, 王刚强, 陈文兴. 超高分子量聚乙烯织物的表面接枝改性及其抑菌性能研究[J]. 现代纺织技术, 2022, 30(2): 134-140. |
[4] | 杲爽, 蔡菲, 倪庆清, 傅雅琴. 柔性吸波纺织复合材料的制备及其性能[J]. 现代纺织技术, 2022, 30(2): 68-74. |
[5] | 聂孙建, 梁燕, 周冠辰, 杨东. 聚四氟乙烯复合过滤材料的覆膜工艺及其性能[J]. 现代纺织技术, 2022, 30(2): 85-92. |
[6] | 宋会芬, 宋丽艳, 潘天浩, 迟长龙, 石素宇, 张学锋. 退火对聚氨酯纤维结构及力学性能的影响[J]. 现代纺织技术, 2022, 30(2): 93-98. |
[7] | 刘娜, 陈香云, 张永锋, 吕文静, 焦志颖. 烟气净化用滤料表面改性及其性能[J]. 现代纺织技术, 2022, 30(1): 162-168. |
[8] | 李龙飞, 邵灵达, 林平, 祝成炎, 丁圆圆, 田伟. 日常防护型口罩结构分析及性能研究[J]. 现代纺织技术, 2022, 30(1): 178-184. |
[9] | 李金屿, 杨允出, 刘鸣茗. 基于结构特征的织物热传递性能预测研究进展[J]. 现代纺织技术, 2022, 30(1): 18-25. |
[10] | 刘秀龙, 王云仪. 海藻纤维的制备及其在纺织服装中的应用研究进展[J]. 现代纺织技术, 2022, 30(1): 26-35. |
[11] | 周荣鑫, 葛烨倩. 碳纳米纤维负极材料制备及其电化学性能[J]. 现代纺织技术, 2022, 30(1): 41-46. |
[12] | 刘站, 李晶, 彭镇. 基于ABAQUS镀铝碳纤维编织格栅的拉伸性能[J]. 现代纺织技术, 2022, 30(1): 47-53. |
[13] | 谢章婷, 郑连刚, 周家德, 张凤翔, 许福军. 环氧泡沫填充间隔织物复合材料的弯曲性能[J]. 现代纺织技术, 2022, 30(1): 54-60. |
[14] | 赵洪杰, 祝成炎, 金肖克, 翁小霞, 田伟. 机织物/隔热涂层三明治结构复合材料的制备及红外隐身性能[J]. 现代纺织技术, 2022, 30(1): 61-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||