现代纺织技术 ›› 2022, Vol. 30 ›› Issue (2): 18-26.DOI: 10.19398/j.att.202103026
陈慧臻a, 戴宏钦a,b(), 潘姝雯a,b, 胡珏a, 陈曦a
收稿日期:
2021-03-19
出版日期:
2022-03-10
网络出版日期:
2021-08-03
通讯作者:
戴宏钦,E-mail: daihongqin@suda.edu.cn作者简介:
陈慧臻(1997-),女,福建邵武人,硕士研究生,主要从事防护服传热传质性能评价方面的研究。
CHEN Huizhena, DAI Hongqina,b(), PAN Shuwena,b, HU Juea, CHEN Xia
Received:
2021-03-19
Published:
2022-03-10
Online:
2021-08-03
摘要:
为突破传统实验手段与一维数学模型的局限,一些研究者提出基于计算流体力学模拟人体-服装-环境系统的热量流动与传递过程,通过计算皮肤温度、传热系数等参数的方式评价服装的传热性能。文章概述了仿真方法解决服装传热问题的流程,揭示服装及人体几何模型建立、计算模型与边界条件设定的关键;从着装人体、服装结构、防护服装功能角度回顾了传热问题的国内外研究进展;总结了常用人体热生理模型的特征,介绍了热调节-CFD耦合系统在服装传热性能评价中的应用。现有模拟方法依然存在难以完全还原纺织材料、衣下空间分布、人体热反应等真实特性的问题,建议将动网格、用户自定义函数、数值模型耦合系统等作为深入研究方向,提高仿真评价的准确性。
中图分类号:
陈慧臻, 戴宏钦, 潘姝雯, 胡珏, 陈曦. 计算流体力学在服装传热性能评价中的应用[J]. 现代纺织技术, 2022, 30(2): 18-26.
CHEN Huizhen, DAI Hongqin, PAN Shuwen, HU Jue, CHEN Xi. Application of CFD in heat and flow transfer performanceevaluation for clothing[J]. Advanced Textile Technology, 2022, 30(2): 18-26.
类型 | 分类 | 名称 | 特征与要求 | 描述现象 |
---|---|---|---|---|
物理模型 | 湍流模型 | low re k-ε[ | 靠近地表,低雷诺数 | 流动传热 |
SST k-ω[ | 适合衣下微环境 | |||
standard k-ε[ | 高雷诺数充分湍流 | |||
realizable k-ε[ | 简单湍流,较常用 | |||
laminar[ | 层流流动 | |||
辐射模型 | WSGG-DO[ | 适合任何光学厚度 | 辐射散热 | |
P1[ | 适合复杂几何,光学厚度大于1 | |||
组分运输 | mixture material[ | 定义无反应混合物分布 | 汗液蒸发 燃烧 | |
volumetric[ | 非稳态,有限反应速率 | |||
边界条件 | 入口边界 | velocity-inlet[ | 不可压缩,指定流速 | 流体流入 |
mass-flow-inlet[ | 可压缩,指定质量流速 | |||
fan[ | 双向边界,指定风扇性能参数 | |||
出口边界 | outflow[ | 自由流出,指定占比 | 流体流出 | |
pressure-outlet[ | 指定压力 | |||
壁面边界 | heat flux[ | 指定热通量 | 热交换 | |
temperature[ | 指定温度 |
表1 常用物理模型与边界条件
Tab.1 Common physics models and boundary conditions
类型 | 分类 | 名称 | 特征与要求 | 描述现象 |
---|---|---|---|---|
物理模型 | 湍流模型 | low re k-ε[ | 靠近地表,低雷诺数 | 流动传热 |
SST k-ω[ | 适合衣下微环境 | |||
standard k-ε[ | 高雷诺数充分湍流 | |||
realizable k-ε[ | 简单湍流,较常用 | |||
laminar[ | 层流流动 | |||
辐射模型 | WSGG-DO[ | 适合任何光学厚度 | 辐射散热 | |
P1[ | 适合复杂几何,光学厚度大于1 | |||
组分运输 | mixture material[ | 定义无反应混合物分布 | 汗液蒸发 燃烧 | |
volumetric[ | 非稳态,有限反应速率 | |||
边界条件 | 入口边界 | velocity-inlet[ | 不可压缩,指定流速 | 流体流入 |
mass-flow-inlet[ | 可压缩,指定质量流速 | |||
fan[ | 双向边界,指定风扇性能参数 | |||
出口边界 | outflow[ | 自由流出,指定占比 | 流体流出 | |
pressure-outlet[ | 指定压力 | |||
壁面边界 | heat flux[ | 指定热通量 | 热交换 | |
temperature[ | 指定温度 |
研究者 | 降温方式 | 模型类型 | 研究发现 | 模型验证 |
---|---|---|---|---|
Choudhary等[ | 腰侧风扇 | 三维扫描 | 冷却能力为154.73W | 假人试验:躯干平均热流差异2.67%,上背部、腋下、上臂段局部差异显著 真人试验:躯干平均对流传热系数测试值为16.019 W/(m2·K),模拟值为19.649 W/(m2·K) |
Sun等[ | 微风扇带 | 简化二维 | 入口流速为0.75m/s和1m/s时,对流、蒸发传热系数显著提高 | 入口流速0.25m/s时,模拟值与Qian等[ |
李杰[ | 液冷通风 | 简化三维 | 通风气体影响较大,适当增加液冷管道内径、导热系数利于冷却换热 | 网格无关性验证:手臂250 万网格、躯干500 万网格、腿部300 万网格 模型可靠性验证:对比张万欣等[ |
谢鹏等[ | 风扇相变 | 曲面三维 | 30℃以上环境降温明显,服装热阻增加有益降温 | 对比真人皮肤温度测试数据,确认模型降温配置方式的可靠性 |
表2 冷却服装降温性能模拟与评价
Tab.2 Simulation and evaluation of performance of cooling garments
研究者 | 降温方式 | 模型类型 | 研究发现 | 模型验证 |
---|---|---|---|---|
Choudhary等[ | 腰侧风扇 | 三维扫描 | 冷却能力为154.73W | 假人试验:躯干平均热流差异2.67%,上背部、腋下、上臂段局部差异显著 真人试验:躯干平均对流传热系数测试值为16.019 W/(m2·K),模拟值为19.649 W/(m2·K) |
Sun等[ | 微风扇带 | 简化二维 | 入口流速为0.75m/s和1m/s时,对流、蒸发传热系数显著提高 | 入口流速0.25m/s时,模拟值与Qian等[ |
李杰[ | 液冷通风 | 简化三维 | 通风气体影响较大,适当增加液冷管道内径、导热系数利于冷却换热 | 网格无关性验证:手臂250 万网格、躯干500 万网格、腿部300 万网格 模型可靠性验证:对比张万欣等[ |
谢鹏等[ | 风扇相变 | 曲面三维 | 30℃以上环境降温明显,服装热阻增加有益降温 | 对比真人皮肤温度测试数据,确认模型降温配置方式的可靠性 |
研究者 | 发表年份 | 节点描述 | 适用环境 |
---|---|---|---|
Fiala等[ | 1999 | 15段187节点,包含脑、肺、骨、肌肉、内脏、脂肪和皮肤 | 瞬态和稳态 |
Huizenga等[ | 2001 | 任意分段,每段有4层身体与1层服装 | 瞬态和非均匀 |
Tanabe等[ | 2002 | 16段65节点 | 瞬态和非均匀 |
Salloum等[ | 2006 | 15段,每段分为核心、皮肤、动脉血、静脉血4节点 | 瞬态和稳态,冷热环境过渡 |
Weng等[ | 2014 | 16段,每段4层 | 常温和48℃高温 |
表3 典型多节点热调节模型
Tab.3 Typical multi-node thermoregulation models
研究者 | 发表年份 | 节点描述 | 适用环境 |
---|---|---|---|
Fiala等[ | 1999 | 15段187节点,包含脑、肺、骨、肌肉、内脏、脂肪和皮肤 | 瞬态和稳态 |
Huizenga等[ | 2001 | 任意分段,每段有4层身体与1层服装 | 瞬态和非均匀 |
Tanabe等[ | 2002 | 16段65节点 | 瞬态和非均匀 |
Salloum等[ | 2006 | 15段,每段分为核心、皮肤、动脉血、静脉血4节点 | 瞬态和稳态,冷热环境过渡 |
Weng等[ | 2014 | 16段,每段4层 | 常温和48℃高温 |
[1] | 杜琴枚. 运动文胸对女性运动热生理的影响[D]. 苏州:苏州大学, 2018:1-2. |
DU Qinmei. Influence of Sports Brassiere on Female Thermal Physiology During Exercise[D]. Suzhou: Soochow University, 2018:1-2. | |
[2] | 吕凯敏, 戴宏钦. 化学防护服的研究进展[J]. 纺织学报, 2020, 41(5):191-196. |
LÜ Kaimin, DAI Hongqin. Research progress of chemical protective clothing[J]. Journal of Textile Research, 2020, 41(5):191-196. | |
[3] |
YU Y, XU D, XU Y S, et al. Variational formulation for a fractional heat transfer model in firefighter protective clothing[J]. Applied Mathematical Modelling, 2016, 40(23/24):9675-9691.
DOI URL |
[4] |
SU Y, LI R, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120:818-829.
DOI URL |
[5] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(1):139-144. |
DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state[J]. Journal of Textile Research, 2020, 41(1):139-144. | |
[6] | 李杰. 舱外航天服—人体热耦合数值模拟[D]. 南京:南京航空航天大学, 2017:29-50. |
LI Jie. Numerical Simulation of Coupling Heat Transfer between/in the Human Body and the Spacesuit for Extravehicular Activity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 29-50. | |
[7] |
SANTOS M S, OLIVEIRA D, CAMPOS J B L M, et al. Numerical analysis of the flow and heat transfer in cylindrical clothing microclimates: Influence of the microclimate thickness ratio[J]. International Journal of Heat and Mass Transfer, 2018, 117:71-79.
DOI URL |
[8] | 杨潇. 基于CFD的游艇流体力学仿真及艇身造型优化研究[D]. 成都:电子科技大学, 2020:9-10. |
YANG Xiao. Fluid Mechanics Simulation and Hull Shape Opimization of Yacht based on CFD[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 9-10. | |
[9] |
LIM J, CHOI H, ROH E K, et al. Assessment of airflow and microclimate for the running wear jacket with slits using CFD simulation[J]. Fashion and Textiles, 2015, 2(1):1-13.
DOI URL |
[10] | 庞丽萍, 巩萌萌, 王浚, 等. 基于人体热调节模型的民机座舱热舒适性分析[J]. 北京航空航天大学学报, 2012, 38(2):166-169,174. |
PANG Liping, GONG Mengmeng, WANG Jun, et al. Aircraft cabin comfort analysis with human thermore-gulation model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2):166-169,174. | |
[11] | 郭庭辉. 液冷服中的流动与传热及其系统研制[D]. 武汉:华中科技大学, 2015:65-67. |
GUO Tinghui. Flow and Heat transfer in Liquid Cooling Garment and Its System Development[D]. Wuhan: Huazhong University of Science & Technology, 2015: 65-67. | |
[12] |
VOELKER C, ALSAAD H. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model[J]. Indoor Air, 2018, 28(3):415-425.
DOI URL |
[13] |
DIXIT A, GADE U. A case study on human bio-heat transfer and thermal comfort within CFD[J]. Building and Environment, 2015, 94:122-130.
DOI URL |
[14] |
CHENG P, CHEN D, WANG J. Effect of underwear on microclimate heat transfer in clothing based on computational fluid dynamics simulation[J]. Textile Research Journal, 2020, 90(11/12):1262-1276.
DOI URL |
[15] |
TIAN M, WANG Z, LI J. 3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD[J]. International Journal of Heat and Mass Transfer, 2016, 93:314-321.
DOI URL |
[16] | ZHANG Y, NOVIETO D, JI Y. Human environmental heat transfer simulation with CFD-the advances and challenges [C]// Proceedings of Eleventh International IBPSA Conference. Glasgow: University of Glasgow Press, 2009: 2162-2168. |
[17] |
DE DEAR R, ARENS E, ZHANG H, et al. Convective and radiative heat transfer coefficients for individual human body segments[J]. International Journal of Biometeorology, 1997, 40(3):141-156.
DOI URL |
[18] |
LI C, ITO K. Numerical and experimental estimation of convective heat transfer coefficient of human body under strong forced convective flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126:107-117.
DOI URL |
[19] | CHOUDHARY B, UDAYRA J, WANG F, et al. Development and experimental validation of a 3D numerical model based on CFD of the human torso wearing air ventilation clothing[J]. International Journal of Heat and Mass Transfer, 2020, 147(11):1-11. |
[20] |
WANG Y, WANG Z, ZHANG X, et al. CFD simulation of naked flame manikin tests of fire proof garments[J]. Fire Safety Journal, 2015, 71:187-193.
DOI URL |
[21] |
TAKADA S, SASAKI A, KIMURA R. Fundamental study of ventilation in air layer in clothing considering real shape of the human body based on CFD analysis[J]. Building and Environment, 2016, 99:210-220.
DOI URL |
[22] | SHENG H, AN Y, ZHANG H, et al. 3D numerical investigation of the heat and flow transfer through cold protective clothing based on CFD[J]. International Journal of Heat and Mass Transfer, 2021, 175(5):12-26. |
[23] | MURAKAMI S, KATO S, ZENG J. Flow and temperature fields around human body with various room air distribution, CFD study on computational thermal mannequin part 1[J]. ASHRAE Transactions, 1997, 103(1):3-15. |
[24] |
VOELKER C, MAEMPEL S, KORNADT O. Measuring the human body's microclimate using a thermal manikin[J]. Indoor Air, 2014, 24(6):567-579.
DOI URL |
[25] |
DEFRAEYE T, BLOCKEN B, KONINCKX E, et al. Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions[J]. Journal of Biomechanics, 2011, 44(9):1695-1701.
DOI URL |
[26] |
KONG M, DANG T Q, ZHANG J, et al. Micro-environmental control for efficient local heating: CFD simulation and manikin test verification[J]. Building and Environment, 2019, 147:382-396.
DOI URL |
[27] | 姜茸凡, 王云仪. 服装衣下空气层热传递性能研究进展[J]. 丝绸, 2018, 55(7):41-48. |
JIANG Rongfan, WANG Yunyi. Research progress of heat transfer performance of air layer entrapped in clothing[J]. Journal of Silk, 2018, 55(7):41-48. | |
[28] | 王诗潭, 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10):153-158. |
WANG Shitan, WANG Yunyi. Research progress of design methods of ventilation mechanism of clothing[J]. Journal of Textile Research, 2017, 38(10):153-158. | |
[29] |
SUN Y, JASPER W J. Numerical modeling of heat and moisture transfer in a wearable convective cooling system for human comfort[J]. Building and Environment, 2015, 93:50-62.
DOI URL |
[30] | QIAN X, FAN J. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind[J]. Annals of Occupational Hygiene, 2006, 50(8):833-842. |
[31] | 张万欣, 陈景山, 李潭秋, 等. 利用暖体假人对液冷服散热特性的实验研究分析[J]. 航天医学与医学工程, 2001, 14(4):257-260. |
ZHANG Wanxin, CHEN Jingshan, LI Tanqiu, et al. Appraisal and analysis of heat removing characteristic of liquid cooling garment using thermal manikin[J]. Space Medicine & Medical Engineering, 2001, 14(4):257-260. | |
[32] | 谢鹏, 秦威南, 吕鹏飞, 等. 屏蔽服冷却系统对人体表面温度影响的研究[J]. 中国安全生产科学技术, 2020, 16(11):159-165. |
XIE Peng, QIN Weinan, Lü Pengfei, et al. Research on influence of cooling system in shielding clothing on surface temperature of human body[J]. Journal of Safety Science and Technology, 2020, 16(11):159-165. | |
[33] |
UDAYRA J, WANG F. A three-dimensional conjugate heat transfer model for thermal protective clothing[J]. International Journal of Thermal Sciences, 2018, 130:28-46.
DOI URL |
[34] |
HSU S, TIEN J, TAKAHASHI F, et al. Modeling heat transfer in thin fire blanket materials under high external heat fluxes[J]. Fire Safety Science, 2011, 10(1):973-986.
DOI URL |
[35] |
TALUKDAR P, TORVI D A, SIMONSON C J, et al. Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3):526-539.
DOI URL |
[36] |
GAO N P, NIU J L. CFD study of the thermal environment around a human body: A review[J]. Indoor and Built Environment, 2005, 14(1):5-16.
DOI URL |
[37] | GAGGE A P, STOLWIJK J A J, NISHI Y. Effective temperature scale based on a simple model of human physiological regulatory response[J]. Ashrae Transac-tions, 1971, 77(1):21-36. |
[38] | STOLWIJK J A J. Mathematical Model of Thermore-gulation,Physiological & Behavioral Temperature Regulation[M]. Springfield:Charles C Thomas, 1970: 703-721. |
[39] |
DUSAN F, LOMAS K J, MARTIN S. A computer model of human thermoregulation for a wide range of environmental conditions: The passive system[J]. Journal of Applied Physiology, 1999, 87(5):1957-1972.
DOI URL |
[40] |
HUIZENGA C, ZHANG H, ARENS E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building and Environment, 2001, 36(6):691-699.
DOI URL |
[41] |
TANABE S I, KOBAYASHI K, NAKANO J, et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy and Buildings, 2002, 34(6):637-646.
DOI URL |
[42] |
SALLOUM M, GHADDAR N, GHALI K. A new transient bioheat model of the human body and its integration to clothing models[J]. International Journal of Thermal Sciences, 2007, 46(4):371-384.
DOI URL |
[43] |
WENG W G, HAN X F, FU M. An extended multi-segmented human bioheat model for high temperature environments[J]. International Journal of Heat and Mass Transfer, 2014, 75:504-513.
DOI URL |
[44] |
JUNNING L, WU M. Protective clothing based on high-temperature thermal radiation[J]. International Journal of Industrial and Manufacturing Systems Engineering, 2019, 4(3):24-30.
DOI URL |
[45] | 杨杰. 基于人体-服装-环境的高温人体热反应模拟与实验研究[D]. 北京:清华大学, 2016:73-87. |
YANG Jie. Numerical and Experimental Study on Physiological Responses in Hot Environments based on Human-Clothing-Environment System[D]. Beijing: Tsinghua University, 2016: 73-87. | |
[46] | SORENSEN D N, VOIGT L K. Modelling flow and heat transfer around a seated human body by computational fluid dynamics[J]. Building & Environment, 2003, 38(6):753-762. |
[47] | BARRY J, ENGINEER P, HILL R. Computational modeling of protective clothing[J]. International Nonwovens Journal, 2003, 12(3):25-34. |
[1] | 郑金峰, 罗戎蕾. 服装销售定量预测方法研究进展[J]. 现代纺织技术, 2022, 30(2): 27-35. |
[2] | 李金屿, 杨允出, 刘鸣茗. 基于结构特征的织物热传递性能预测研究进展[J]. 现代纺织技术, 2022, 30(1): 18-25. |
[3] | 丰翔, 王晓蓬, 邱笑笑, 王来力. 基于CiteSpace的纺织服装足迹类文献计量分析[J]. 现代纺织技术, 2022, 30(1): 9-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||