现代纺织技术 ›› 2022, Vol. 30 ›› Issue (2): 75-84.DOI: 10.19398/j.att.202104039
收稿日期:
2021-04-20
出版日期:
2022-03-10
网络出版日期:
2021-08-03
通讯作者:
高晓平,E-mail: gaoxp@imut.edu.cn作者简介:
陈嘉炜(1999-),男,江西吉安人,硕士研究生,主要从事纺织复合材料力学性能方面研究。
基金资助:
CHEN Jiawei, ZHANG Hongwei, GAO Xiaoping()
Received:
2021-04-20
Published:
2022-03-10
Online:
2021-08-03
摘要:
为研究双轴向碳玻混杂复合材料压缩性能,采用真空辅助树脂传递模塑成型工艺(VARTM)制备不同质量分数的纳米氧化石墨烯(GO)改性碳玻混杂纤维复合材料试样,分析不同GO质量分数对碳玻混杂复合材料压缩性能的影响。结果表明:经GO改性后复合材料试样沿0°和90°方向压缩强度分别提高了12.24%和19.64%。以试样压缩性能为目标值,通过非线性拟合并经实验验证,表明最优GO质量分数为0.21%。试样微观断裂形貌图表明,经GO改性后复合材料纤维/基体界面结合面积与强度得到提高,可有效抑制纤维分层及界面脱黏,可见GO改性可以明显提高碳玻混杂纤维复合材料压缩性能。研究结果可为深入分析GO机理,提高混杂纤维复合材料力学性能提供一定的参考。
中图分类号:
陈嘉炜, 张宏伟, 高晓平. 氧化石墨烯改性碳玻混杂纤维增强复合材料的压缩性能[J]. 现代纺织技术, 2022, 30(2): 75-84.
CHEN Jiawei, ZHANG Hongwei, GAO Xiaoping. Compressive properties of graphene oxide modified carbon/glasshybrid fiber reinforced composite[J]. Advanced Textile Technology, 2022, 30(2): 75-84.
织物种类 | 面密度/(g·m-2) | 纱线 | 线密度/tex | 织造密度/(根数·(10cm)-1) | |
---|---|---|---|---|---|
CF(T700-12k) | 200 | 经纱 | 碳纤维 | 800 | 20 |
纬纱 | 39 | ||||
捆绑纱 | 玻纤 | 300 | — | ||
GF(E-玻纤) | 1200 | 经纱 | 玻纤 | 2400 | 27 |
纬纱 | 1500 | 22 | |||
捆绑纱 | 涤纶纱 | 83 | — |
表1 双轴向经编织物性能
Tab.1 Thebiaxial warp knitted fabric performance
织物种类 | 面密度/(g·m-2) | 纱线 | 线密度/tex | 织造密度/(根数·(10cm)-1) | |
---|---|---|---|---|---|
CF(T700-12k) | 200 | 经纱 | 碳纤维 | 800 | 20 |
纬纱 | 39 | ||||
捆绑纱 | 玻纤 | 300 | — | ||
GF(E-玻纤) | 1200 | 经纱 | 玻纤 | 2400 | 27 |
纬纱 | 1500 | 22 | |||
捆绑纱 | 涤纶纱 | 83 | — |
基体组分 | 外观(常温) | 黏度/(MPa·s) | 密度/(g·cm-3) | 燃点 |
---|---|---|---|---|
NO.1-692-2A | 透明澄清黏稠液体 | 1500 | 1.12 | >150℃ |
NO.1-692-2B | 黄色澄清液体 | 15 | 0.95 | >120℃ |
表2 环氧树脂与固化剂特征
Tab.2 The characteristics of epoxy resin and curing agent
基体组分 | 外观(常温) | 黏度/(MPa·s) | 密度/(g·cm-3) | 燃点 |
---|---|---|---|---|
NO.1-692-2A | 透明澄清黏稠液体 | 1500 | 1.12 | >150℃ |
NO.1-692-2B | 黄色澄清液体 | 15 | 0.95 | >120℃ |
参数 | 数值 |
---|---|
θ/(°) | 5.67 |
n | 1 |
λ/nm | 0.15416 |
B/rad | 0.91 |
K | 0.89 |
表3 GO粉末的XRD
Tab.3 X-Ray diffraction of GO powder
参数 | 数值 |
---|---|
θ/(°) | 5.67 |
n | 1 |
λ/nm | 0.15416 |
B/rad | 0.91 |
K | 0.89 |
GO填充量的质量分数/% | 测试方向 | 压缩强度/MPa | 强度变化/% | 压缩模量/GPa | 模量变化/% |
---|---|---|---|---|---|
0 | 0° | 382.33±5.33 | — | 3.56±0.21 | — |
90° | 340.04±6.75 | — | 3.91±0.33 | — | |
0.10 | 0° | 404.25±7.03 | 5.73↑ | 4.26±0.25 | 19.66↑ |
90° | 394.27±8.26 | 15.95↑ | 4.47±0.40 | 14.32↑ | |
0.25 | 0° | 429.14±10.32 | 12.24↑ | 4.92±0.32 | 38.20↑ |
90° | 406.82±13.56 | 19.64↑ | 4.90±0.46 | 25.32↑ | |
0.35 | 0° | 388.49±8.32 | 1.61↑ | 4.78±0.23 | 34.27↑ |
90° | 364.10±9.66 | 7.08↑ | 4.26±0.44 | 8.95↑ |
表4 不同GO填充量改性试样的压缩性能
Tab.4 Compressive properties of modified samples with different GO loadings
GO填充量的质量分数/% | 测试方向 | 压缩强度/MPa | 强度变化/% | 压缩模量/GPa | 模量变化/% |
---|---|---|---|---|---|
0 | 0° | 382.33±5.33 | — | 3.56±0.21 | — |
90° | 340.04±6.75 | — | 3.91±0.33 | — | |
0.10 | 0° | 404.25±7.03 | 5.73↑ | 4.26±0.25 | 19.66↑ |
90° | 394.27±8.26 | 15.95↑ | 4.47±0.40 | 14.32↑ | |
0.25 | 0° | 429.14±10.32 | 12.24↑ | 4.92±0.32 | 38.20↑ |
90° | 406.82±13.56 | 19.64↑ | 4.90±0.46 | 25.32↑ | |
0.35 | 0° | 388.49±8.32 | 1.61↑ | 4.78±0.23 | 34.27↑ |
90° | 364.10±9.66 | 7.08↑ | 4.26±0.44 | 8.95↑ |
测试方向 | GO 改性质量分数/% | |||
---|---|---|---|---|
0 | 0.10 | 0.25 | 0.35 | |
0° | 382.33 | 404.25 | 429.14 | 388.49 |
90° | 340.04 | 394.27 | 406.82 | 364.1 |
表5 不同GO改性质量分数试样压缩强度
Tab.5 Compressive strength of samples with different GO modified massfractions
测试方向 | GO 改性质量分数/% | |||
---|---|---|---|---|
0 | 0.10 | 0.25 | 0.35 | |
0° | 382.33 | 404.25 | 429.14 | 388.49 |
90° | 340.04 | 394.27 | 406.82 | 364.1 |
参数 | 数值 | 标准误差 |
---|---|---|
A | 23.50 | 0.00 |
y0 | 407.12 | 3.39 |
φ | 0.11 | 0.02 |
表6 试样沿0°方向压缩性能拟合参数
Tab.6 Fitting parameters of the compression performance of the sample along the 0° direction
参数 | 数值 | 标准误差 |
---|---|---|
A | 23.50 | 0.00 |
y0 | 407.12 | 3.39 |
φ | 0.11 | 0.02 |
[1] | 邓富泉, 张丽, 刘少祯, 等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7):1857-1863. |
DENG Fuquan, ZHANG Li, LIU Shaozhen, et al. Mechanical properties of carbon fiber-glass fiber hybrid reinforced epoxy composites in interlaminar layer[J]. Acta Materiae Compositae Sinica, 2018, 35(7):1857-1863. | |
[2] | 许经纬, 顾嫒娟. 碳玻混杂纤维增强复合材料的拉-拉疲劳性能的研究[J]. 复合材料科学与工程, 2020(4):39-45. |
XU Jingwei, GU Yuanjuan. Study on tension-tension fatigue performance for carbon/glass hybridized fabric reinforced composites[J]. Composites Science and Engineering, 2020(4):39-45. | |
[3] | 黄思, 张颖, 阎述韬, 等. 混杂纤维增强环氧树脂复合材料的制备及力学性能[J]. 天津城建大学学报, 2020, 26(1):26-32. |
HUANG Si, ZHANG Ying, YAN Shutao, et al. Preparation and mechanical properties of hybrid fiber reinforced epoxy resin composites[J]. Journal of Tianjin Chengjian University, 2020, 26(1):26-32. | |
[4] | 孟志新, 周影影, 张毅, 等. PIP-SiC基体改性C/SiC复合材料的微观结构与强韧性[J]. 航空材料学报, 2020, 40(6):16-22. |
MENG Zhixin, ZHOU Yingying, ZHANG Yi, et al. Microstructure strength and toughness of C/SiC composite modified by PIP-SiC[J]. Journal of Aeronautical Materials, 2020, 40(6):16-22. | |
[5] |
SAILESH M K, SNEHA B C, CHANDRA S Y. The effect of fiber distribution on the compressive strength of hybrid polymer composites[J]. Journal of Reinforced Plastics and Composites, 2019, 38(2):74-87.
DOI URL |
[6] |
ANDREA D, STEFANO M, ALESSANDRO P. Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites[J]. Journal of Composite Materials, 2012, 46(12):1439-1451.
DOI URL |
[7] |
WANG C, GAO X, LI Y. Mechanical properties improvement of nanoclay addition epoxy 3D orthogonal woven composite material[J]. Fibers and Polymers, 2019, 20(7):1495-1503.
DOI URL |
[8] |
JIANG X, MA Y, GAO X. Mechanical properties improvement of silane addition epoxy/3D orthogonal woven composite material[J]. Journal of The Textile Institute, 2018, 109(10):1341-1347.
DOI URL |
[9] |
WITHERS G J, YU Y, KHABASHESKU V N, et al. Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organomodified nanoclays[J]. Composites Part B-Engineering, 2015, 72:175-182.
DOI URL |
[10] | 南欣欣, 贾玮民, 郝毅杰, 等. 氧化石墨烯改性环氧树脂的制备及性能[J]. 热固性树脂, 2020, 35(4):6-11. |
NAN Xinxin, JIA Weiming, HAO Yijie, et al. Preparation and its properties of graphene oxide modified epoxy resins[J]. Thermosetting Resin, 2020, 35(4):6-11. | |
[11] | 魏虹, 蒋伟, 陈长胜, 等. 基于功能化改性氧化石墨烯增强环氧树脂复合材料性能研究[J]. 航天制造技术, 2020(6):1-7. |
WEI Hong, JIANG Wei, CHEN Changsheng, et al. Study on performance of functionalized modified graphene oxide reinforced epoxy resin composites[J]. Aerospace Manufacturing Technology, 2020(6):1-7. | |
[12] |
ZHANG X, SU Y, LEI L, et al. Preparation of a three-dimensional modified graphene oxide via RAFT polymerization for reinforcing cement composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610:125925.
DOI URL |
[13] |
LI Y, TIAN H F, ZHANG J, et al. Fabrication and properties of rigid polyurethane nanocomposite foams with functional isocyanate modified graphene oxide[J]. Polymer Composites. 2020, 41(12):5126-5134.
DOI URL |
[14] |
HE Y, CHEN Q, WU D, et al. Effect of multiscale reinforcement by fiber surface treatment with polyvinyl alcohol/graphene oxide/oxidized carbon nanotubes on the mechanical properties of reinforced hybrid fiber composites[J]. Composites Science and Technology, 2021, 204:108634.
DOI URL |
[15] | 吴明宇, 闫晓鹏, 郭章新, 等. 低浓度氧化石墨烯改性环氧树脂基碳纤维层合板的拉伸性能[J]. 高压物理学报, 2020, 34(6):10-16. |
WU Mingyu, YAN Xiaopeng, GUO Zhangxin, et al. Tensile properties of low concentration graphene oxide modified epoxy resin based carbon fiber laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(6):10-16. | |
[16] |
LI N, YANG X X, BAO F, et al. Improved mechanical properties of copoly(phthalazinone ether sulphone)s composites reinforced by multiscale carbon fibre/graphene oxide reinforcements: A step closer to industrial production[J]. Polymers, 2019, 11(2):237.
DOI URL |
[17] | 潘月秀, 鲍佳伟, 王凡文, 等. 国产T800炭纤维/环氧树脂单向复合材料动态压缩性能[J]. 新型炭材料, 2020, 35(6):785-792. |
PAN Yuexiu, BAO Jiawei, WANG Fanwen, et al. Dynamic compressive properties of unidirectional composites made of TG800 carbon fiber and epoxy resin[J]. New Carbon Materials, 2020, 35(6):785-792. |
[1] | 谢章婷, 郑连刚, 周家德, 张凤翔, 许福军. 环氧泡沫填充间隔织物复合材料的弯曲性能[J]. 现代纺织技术, 2022, 30(1): 54-60. |
[2] | 赵洪杰, 祝成炎, 金肖克, 翁小霞, 田伟. 机织物/隔热涂层三明治结构复合材料的制备及红外隐身性能[J]. 现代纺织技术, 2022, 30(1): 61-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||