Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (1): 13-27.DOI: 10.19398/j.att.202208029
• Invited Column: Wearable and Intelligent Textiles • Previous Articles Next Articles
ZHANG Huirong1, XIA Zhaopeng1, CHEN Hao2, PAN Jiajun1, WANG Tao1, LIU Xiaochen1
Received:
2022-08-16
Online:
2023-01-10
Published:
2023-01-17
张惠蓉1, 夏兆鹏1, 陈浩2, 潘佳俊1, 王涛1, 刘晓辰1
通讯作者:
夏兆鹏,E-mail:xia_zhaopeng@163.com
作者简介:
张惠蓉(1998—),女,贵州贵阳人,硕士研究生,主要从事智能电加热服饰方面的研究。
基金资助:
CLC Number:
ZHANG Huirong, XIA Zhaopeng, CHEN Hao, PAN Jiajun, WANG Tao, LIU Xiaochen. Preparation and reliability of wearable electric heating elements[J]. Advanced Textile Technology, 2023, 31(1): 13-27.
张惠蓉, 夏兆鹏, 陈浩, 潘佳俊, 王涛, 刘晓辰. 可穿戴电加热元件的制备及可靠性[J]. 现代纺织技术, 2023, 31(1): 13-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202208029
[1] FANG S, WANG R, NI H S, et al. A review of flexible electric heating element and electric heating garments[J]. Journal of Industrial Textiles, 2022,51(S):101-136. [2] YEN R H, CHEN C Y, HUANG C T, et al. Numerical study of anisotropic thermal conductivity fabrics with heating elements[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2013,23(5): 750-771. [3] PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020,4(4): 724-742. [4] KIM K, REID B A, CASEY C A, et al. Effects of repeated local heat therapy on skeletal muscle structure and function in humans[J]. Journal of Applied Physiology, 2020,128(3): 483-492. [5] HYLDAHL R D, PEAKE J M. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations[J]. Journal of Applied Physiology, 2020,129(2): 353-365. [6] SONG W F, LU Y H, LIU Y P, et al. Effect of partial-body heating on thermal comfort and sleep quality of young female adults in a cold indoor environment[J]. Building and Environment, 2020,169: 106585. [7] 李萍,蒋晓文.智能电加热服的研究进展[J].棉纺织技术,2019,47(9):79-84. LI Ping, JIANG Xiaowen. Research progress of intelligent electric heating clothing[J]. Cotton Textile Technology, 2019, 47(9): 79-84. [8] BAI Y Y, LI H X, GAN S J, et al. Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics[J]. Measurement, 2018,122: 192-200. [9] SHYR T W, SHIE J W. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles[J]. Journal of Magnetism and Magnetic Materials, 2012,324(23): 4127-4132. [10] KAYACAN O, BULGUN E, SAHIN O. Implementation of steel-based fabric panels in a heated garment design[J]. Textile Research Journal, 2009,79(16): 1427-1437. [11] ZHAO W L, ZHENG Y Q, QIAN J N, et al. Agnws/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding[J]. Journal of Alloys and Compounds, 2022,923: 166471. [12] HONG X H, PENG T, ZHU C Y, et al. Electromagnetic shielding, resistance temperature-sensitive behavior, and decoupling of interfacial electricity for reduced graphene oxide paper[J]. Journal of Alloys and Compounds, 2021,882: 160756. [13] 虞茹芳,洪兴华,祝成炎,等.还原氧化石墨烯涂层织物的电加热性能[J].纺织学报,2021,42(10):126-131. YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021,42(10): 126-131. [14] SONG P, WANG G, ZHANG Y. Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors[J]. Sensors and Actuators A: Physical, 2021,323: 112659. [15] PHILIP B, JEWELL E, GREENWOOD P, et al. Material and process optimization screen printing carbon graphite pastes for mass production of heating elements[J]. Journal of Manufacturing Processes, 2016,22: 185-191. [16] SUI D, HUANG Y, HUANG L, et al. Flexible and transparent electrothermal film heaters based on graphene materials[J]. Small, 2011,7(22): 3186-3192. [17] CLAYPOLE A, CLAYPOLE J, BEZODIS N, et al. Printed nanocarbon heaters for stretchable sport and leisure garments[J]. Materials, 2022,15(2): 573. [18] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science (New York), 2021,372(6547): e1581. [19] SAIDI A, GAUVIN C, LADHARI S, et al. Advanced functional materials for intelligent thermoregulation in personal protective equipment[J]. Polymers, 2021,13(21): 3711. [20] SUN K X, SU L, LONG H R. Structural parameters affecting electrothermal properties of woolen knitted fabrics integrated with silver-coated yarns[J]. Polymers, 2019,11(10): 1709. [21] HAMDANI S T A, POTLURI P, FERNANDO A. Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn[J]. Materials, 2013,6(3): 1072-1089. [22] LIU H, LI J, CHEN L, et al. Thermal-electronic behaviors investigation of knitted heating fabrics based on silver plating compound yarns[J]. Textile Research Journal, 2016,86(13): 1398-1412. [23] LIU H, WANG X, LI J, et al. Fabrication and characterization of nano-SiC/thermoplastic polyurethane hybrid heating membranes based on fine silver filaments[J]. Journal of Applied Polymer Science, 2015,132(8): 41498. [24] NOTINGHER P V, PANAITESCUA D, PAVENA H, et al. Some characteristics of conductive polymer composites containing stainless steel fibers[J]. Journal of Optoelec-tronics and Advanced Materials, 2004, 6: 1081-1084. [25] KIM J H, KIM K S, JANG K R, et al. Enhancing adhesion of screen-printed silver nanopaste films[J]. Advanced Materials Interfaces, 2015,2(13): 1500283. [26] FANG S, WANG R, NI H S, et al. Thermal field distribution investigation and simulation of silver paste heating fabric by screen printing based on joule heating effect[J]. Journal of Materials Science: Materials in Electronics, 2021,32(23): 27762-27776. [27] ASHAYER-SOLTANI R, HUNT C, THOMAS O. Fabrication of highly conductive stretchable textile with silver nanoparticles[J]. Textile Research Journal, 2016,86(10): 1041-1049. [28] HSU P C, LIU X G, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015,15(1): 365-371. [29] AN H J, SARKHEIL M, PARK H S, et al. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019,218: 62-69. [30] INEZ E D M, FLORES A I F G, PASRTORIZA H, et al. Electrothermal silver nanowire thin films for In-Situ observation of thermally-driven chemical processes[J]. Sensors and Actuators B, 2018,259: 475-483. [31] LI M Z, LI Z Y, WANG J, et al. Screen printed silver patterns on functionalised aramid fabric[J]. Fibers and Polymers, 2017,18(10): 1975-1980. [32] KIM H, KIM H S, LEE S. Thermal insulation property of graphene/polymer coated textile based multi-layer fabric heating element with aramid fabric[J]. Scientific Reports, 2020,10: 17586. [33] LEE S, JANG D, CHUNG Y S, et al. Cost-effective and highly efficient surface heating elements using high thermal conductive carbon fibers[J]. Composites Part A: Applied Science and Manufacturing, 2020,137: 105992. [34] HAN W D, QIAN X, MA H B, et al. Effect of nickel electroplating followed by a further copper electroplating on the micro-structure and mechanical properties of high modulus carbon fibers[J]. Materials Today Communi-cations, 2021,27: 102345. [35] WANG R, XU Z, ZHUANG J H, et al. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters[J]. Advanced Electronic Materials, 2017,3(2): 1600425. [36] TANG P P, DENG Z M, ZHANG Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor[J]. Advanced Functional Materials, 2022,32(28): 2112156. [37] LIU P, LI Y, XU Y, et al. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure[J]. Small, 2018,14(4): 1702926. [38] CHOI D, KIL H S, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon, 2019,142: 610-649. [39] TUGIRUMUBANO A, JEONG H, KIM J D, et al. Reliability evaluation of the performance of non-woven carbon fiber fabric for heating element applications[J]. Journal of Materials Research and Technology, 2021,14: 2140-2149. [40] KIM H, LEE S, KIM H. Electrical heating performance of electro-conductive Para-aramid knit manufactured by dip-coating in a graphene/waterborne polyurethane composite[J]. Scientific Reports, 2019,9: 1511. [41] ILANCHEZHIYAN P, ZAKIROVA A S, KUMARA G M, et al. Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications[J]. RSC Advances, 2015, 5(14): 10697-10702. [42] YANG B, DING X Y, ZHANG M Y, et al. Scalable electric heating paper based on CNT/Aramid fiber with superior mechanical and electric heating properties[J]. Composites Part B: Engineering, 2021,224: 109242. [43] YU Q, WENG P X, HAN L, et al. Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning[J]. Cellulose, 2019,26(12): 7523-7535. [44] LI X S, CAI W W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009,324(5932): 1312-1314. [45] LEÓN V, RODRIGUEZ A M, PRIETO P, et al. Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions[J]. ACS Nano, 2014,8(1): 563-571. [46] LI C, XU Y T, ZHAO B, et al. Flexible graphene electrothermal films made from electrochemically exfoliated graphite[J]. Journal of Materials Science, 2016,51(2): 1043-1051. [47] NIKOLAEV D V, EVSEEV Z I, SMAGULOVA S A, et al. Electrical properties of textiles treated with graphene oxide suspension[J]. Materials, 2021,14(8): 1999. [48] HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020,14(1): 688-697. [49] ZENG Z H, JIN H, CHEN M J, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials, 2016,26(2): 303-310. [50] OPWIS K, KNITTEL D, GUTMANN J S. Oxidative in situ deposition of conductive PEDOT:PTSA on textile substrates and their application as textile heating element[J]. Synthetic Metals, 2012,162(21/22): 1912-1918. [51] BALINT R, CASSIDY N J, CARTMELL S H. Conductive polymers: Towards a smart biomaterial for tissue engineering[J]. Acta Biomaterialia, 2014,10(6): 2341-2353. [52] HAO D D, XU B, CAI Z S. Polypyrrole coated knitted fabric for robust wearable sensor and heater[J]. Journal of Materials Science: Materials in Electronics, 2018,29(11): 9218-9226. [53] WANG Y T, CHEN L Y, CHENG H, et al. Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management[J]. Chemical Engineering Journal, 2020,402: 126222. [54] PRUNET G, PAWULA F, FLEURY G, et al. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications[J]. Materials Today Physics, 2021,18: 100402. [55] ABAD B, ALDA I, DIAZ-CHAO P, et al. Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs)[J]. Journal of Materials Chemistry A, 2013,1(35): 10450. [56] MORAES M R, ALVES A C, TOPTAN F, et al. Glycerol/PEDOT:PSS coated woven fabric as a flexible heating element on textiles[J]. Journal of Materials Chemistry C, 2017,5(15): 3807-3822. [57] ȦKERFELDT M, STRȦȦT M, WALKENSTRÖM P. Electrically conductive textile coating with a PEDOT:PSS dispersion and a polyurethane binder[J]. Textile Research Journal, 2013,83(6): 618-627. [58] 林思伶,李龙,吴磊,等.导电腈纶纱的导电性及其织物的电热性能研究[J].棉纺织技术,2021,49(11):21-25. LIN Siling, LI Long, WU Lei, et al. Study on electrical conductivity of conducting acrylic yarn and its fabric electrothermal property[J]Cotton Textile Technology, 2021,49(11): 21-25. [59] CAI G F, CIOU J H, LIU Y Z, et al. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices[J]. Science Advances, 2019,5(7): 7956. [60] SONG P, LIU B, QIU H, et al. MXenes for polymer matrix electromagnetic interference shielding composites: A review[J]. Composites Communications, 2021,24:100653. [61] ZHENG X H, WANG P, ZHANG X S, et al. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy[J]. Composites Part A: Applied Science and Manufacturing, 2022,152: 106700. [62] XIN W, MA M G, CHEN F. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2021,4(7): 7234-7243. [63] JIANG D G, ZHANG J Z, QIN S, et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices[J]. ACS Nano, 2021,15(3): 5000-5010. [64] ROVIRA J, NADAL M, SCHUHMACHER M, et al. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment[J]. Environmental Research, 2015,140: 308-316. [65] ODUKUDU F B, AYENIMO J G, ADEKUNLE A S, et al. Safety evaluation of heavy metals exposure from consumer products[J]. International Journal of Consumer Studies, 2014,38(1): 25-34. [66] BRÜSCHWEILER B J, MERLOT C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet[J]. Regulatory Toxicology and Pharmacology, 2017,88: 214-226. [67] KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors[J]. Toxicology, 2013,314(1): 76-83. [68] HUANG J N, LI Y R, XU Z J, et al. An integrated smart heating control system based on sandwich-structural textiles[J]. Nanotechnology, 2019,30(32): 325203. [69] POLANSKY R, SOUKUP R, REBOUN J, et al. A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread[J]. Sensors and Actuators A, 2017,265: 111-119. [70] ZHENG X, NIE W, HU Q, et al. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection[J]. Materials & Design, 2021,200: 109442. [71] ESPOSITO CORCIONE C, FERRARI F, STRIANI R, et al. Transport properties of natural and artificial smart fabrics impregnated by graphite nanomaterial stacks[J]. Nanomaterials, 2021,11(4): 1018. [72] CHENG N, ZHANG L, KIM J, et al. Vapor phase organic chemistry to deposit conjugated polymer films on arbitrary substrates[J]. Journal of Materials Chemistry C, 2017,5(23): 5787-5796. [73] LI Z, HULDERMAN T, SALMEN R, et al. Cardiovas-cular effects of pulmonary exposure to single-wall carbon nanotubes[J]. Environmental Health Perspectives, 2007,115(3): 377-382. [74] FU P P, XIA Q S, HWANG H M, et al. Mechanisms of nanotoxicity: generation of reactive oxygen species[J]. Journal of Food and Drug Analysis, 2014,22(1): 64-75. [75] DAVIDE F. Neurophysiology of skin thermal sensations[J]. Comprehensive Physiology, 2016,6(3): 1429. [76] WANG Y W, BEEKMAN J, HEW J, et al. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring[J]. Advanced Drug Delivery Reviews, 2018,123: 3-17. [77] LIU H, LIAO J K, YANG D, et al. The response of human thermal perception and skin temperature to step-change transient thermal environments[J]. Building and Environment, 2014,73: 232-238. [78] LOU L, CHEN K K, FAN J T. Advanced materials for personal thermal and moisture management of health care workers wearing PPE[J]. Materials Science and Engineering: R: Reports, 2021,146: 100639. [79] FU K, YANG Z, PEI Y, et al. Designing textile architectures for high energy-efficiency human body sweat-and cooling-management[J]. Advanced Fiber Materials, 2019,1(1): 61-70. [80] RUIZ-CALLEJA T, CALDERóN-VILLAJOS R, BONET-ARACIL M, et al. Thermoelectrical properties of graphene knife-coated cellulosic fabrics for defect monitoring in joule-heated textiles[J]. Journal of Industrial Textiles, 2022,51(S):8884-8905. [81] 沈悦明,张雪青,李璇.电加热服装质量风险调查分析[J].中国纤检,2019(2):32-35. SHEN Yueming, ZHANG Xueqing, LI Xuan. Investigation and analysis on quality risk of electric heating clothing[J]. China Fiber Inspection. 2019(2): 32-35. [82] LIU S, FU S J, WU J, et al. Development and charac-terization of electrical heating garment based on the weft knitted jacquard pattern for back pain disease[J]. Journal of the Textile Institute, 2022,113(11): 2428-2434. [83] HAO Y N, TIAN M W, ZHAO H T, et al. High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route[J]. Industrial & Engineering Chemistry Research, 2018,57(40): 13437-13448. [84] ARAPOV K, RUBINGH E, ABBEL R, et al. Conductive screen printing inks by gelation of graphene dispersions[J]. Advanced Functional Materials, 2016,26(4): 586-593. [85] KIM H, LEE S, KIM H. Electrical heating performance of electro-conductive para-aramid knit manufactured by dip-coating in a graphene/waterborne polyurethane composite[J]. Scientific Reports, 2019,9: 1511. [86] LUO J, LU H F, ZHANG Q C, et al. Flexible carbon nanotube/polyurethane electrothermal films[J]. Carbon, 2016,110: 343-349. |
[1] | QIN Ji’en, TANG Yuqin, QIN Xiuxian, YIN Yunjie. Preparation of MXene/nylon fabrics and their conductive properties [J]. Advanced Textile Technology, 2024, 32(8): 1-6. |
[2] | WANG Yanmin, DING Xinbo, LIU Tao, QIU Qiaohua, HASAN MD KAMRUL, ZHU Lingqi, ZHOU Jiabao. Preparation and sensing and antimicrobial properties of poly(vinyl alcohol)/hyaluronic acid composite conductive hydrogels [J]. Advanced Textile Technology, 2024, 32(8): 23-34. |
[3] | GAO Yue , TAO Qingyun , MENG Fenye , YAN Xiong , HU Jiyong . Influence of structural parameters on the performance of braided core-sheath triboelectric sensing yarns [J]. Advanced Textile Technology, 2024, 32(7): 1-12. |
[4] | ZHAO Shikang, WANG Hang, TIAN Mingwei. Parallel Electrode Electroluminescent Yarn Construction Molding and its Water Rescue Wearable Application [J]. Advanced Textile Technology, 2024, 32(4): 45-51. |
[5] | YUE Xinyana, HONG Jianhana, b . Research progress on wearable flexible sensors with one-dimensional structure [J]. Advanced Textile Technology, 2024, 32(2): 27-39. |
[6] | XU Wenyu, WANG Huiya, ZHU Yaofeng. Core-shell structured PEDOT:PSS/SA@MXene composite fibers with microwave absorption performance [J]. Advanced Textile Technology, 2024, 32(12): 10-28. |
[7] | XIE Jinlin, ZHANG Jing, GUO Yuxing, ZHAO Zhihui, QIU Hua, GU Peng, . Application progress of conductive fibers in the application of new textiles [J]. Advanced Textile Technology, 2023, 31(6): 241-254. |
[8] | HAN Jingchuanga, SONG Lixinb, XIONG Jieb. Research progress on the mechanical stability of flexible perovskite solar cells [J]. Advanced Textile Technology, 2023, 31(5): 249-258. |
[9] | WANG Yina, DING Xinboa, LIU Taoa, b, QIU Qiaohuaa, WANG Yanminga. Preparation and conductive properties of flexible sensors based on silk fibroin/MXene composite nanofiber membranes [J]. Advanced Textile Technology, 2023, 31(4): 63-73. |
[10] | ZHOU Huimin, DING Xinbo, LIU Tao, QIU Qiaohua. Preparation of the cellulose/MXene composite aerogel and its adsorption mechanism for methylene blue [J]. Advanced Textile Technology, 2023, 31(4): 93-102. |
[11] | FANG Xiangmin, QU Lijun, TIAN Mingwei. Fabrication and Wearable Application of Fabric-Based Triboelectric Pressure Sensor [J]. Advanced Textile Technology, 2023, 31(4): 183-191. |
[12] | YIN Yunlei, GUO Cheng, YANG Hongying, LI Hong, WANG Zheng. Research progress of electronic fabrics in the intelligent wearable field [J]. Advanced Textile Technology, 2023, 31(1): 1-12. |
[13] | LIANG Jiawen, LI Tingting, YAN Zhanlin, ZHANG Bin, CAO Chongyang, FU Zhifang, CHEN Naichao. Research progress on energy supply of wearable devices [J]. Advanced Textile Technology, 2023, 31(1): 28-39. |
[14] | ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles [J]. Advanced Textile Technology, 2022, 30(4): 1-11. |
[15] | ZHANG Yingxin, XU Lei, WANG Dawei, LI Nan, YANG Yunfei. Research progress of fabric electrode in bioelectric signal monitoring [J]. Advanced Textile Technology, 2022, 30(4): 42-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||