Research progress on the application of flexible fabric sensors in smart socks
XU Jiashi, WU Qiaoying
2024, 32(11):
1-14.
Asbtract
(
)
PDF (8953KB)
(
)
References |
Related Articles |
Metrics
With the development of the times and the progress of science and technology, smart wearable devices have received extensive attention from researchers. Among various wearable devices, smart socks are expected to play an important role in the fields of health monitoring, athletic training and therapy, disease prevention and interactive learning because of their comfort, softness, high precision, small size and convenience.
In recent years, the application of smart wearable devices is getting increasingly important in people’s daily life. Devices with characteristics of softness, comfort, compactness, convenience, and skin-friendliness have become a research hotspot. And in order to meet people’s demand of comfort and convenience, smart wearable devices are gradually developing towards flexibility and miniaturization, which gradually makes textiles with small volume, good softness, breathableness and friendliness an ideal carrier for smart wearable devices. The flexible fabric sensor, with the advantages of lightness, thinness, breathableness, softness, deformability, and high integration with other materials, sees great development potential and can be highly adaptable to smart socks. Smart socks for pressure monitoring can identify the wearer’s gait information, thus providing gait assistance. They can also be used for disease prevention or treatment; smart socks for temperature monitoring can prevent venous congestion and foot ulcers. Smart socks with multi-functional monitoring are widely used in sports health, disease prevention, human-computer interaction and other fields. As smart socks continue to expand their application range, future research should focus on the development of comfortable and intelligent materials and better integration methods. In such a way, the daily use of smart socks can be realized.
The flexibility and skin-friendliness of flexible fabric sensors are crucial for smart socks. Smart socks can be highly integrated with flexible fabric sensors while meeting the condition of being ideal carriers. At present, smart socks have broad application prospects in gait recognition, disease prevention, motion monitoring, human-computer interaction and other fields. With further optimization and development, smart socks are expected to realize the daily usage and bring us more intelligent life experiences.
As a foot wearable device, smart socks have great potential in the smart wearable field. In the future, these exquisite and multi-functional smart socks are expected to be integrated into people’s daily life. They are not only wearable, but also play an important role in sports monitoring, health monitoring, disease prevention, human-computer interaction and other fields. Although smart socks have been developed in a variety of styles and functions, their durability, wearability and scale remain as problems that researchers need to face and solve. Therefore, it is necessary to improve the materials, integrated processes, and energy supply methods of flexible fabric sensors to speed up the daily usage of smart socks.