Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (1): 40-53.DOI: 10.19398/j.att.202204037
• Invited Column: Wearable and Intelligent Textiles • Previous Articles Next Articles
LÜ Dongfanga, CAO Yiminb, SONG Lixinb, XIONG Jieb
Received:
2022-04-19
Online:
2023-01-10
Published:
2023-01-17
吕东方a, 曹漪玟b, 宋立新b, 熊杰b
通讯作者:
熊杰,E-mail: jxiong@zstu.edu.cn
作者简介:
吕东方(1997—),男,河南信阳人,硕士研究生,主要从事柔性可穿戴钙钛矿太阳能电池方面的研究。
基金资助:
CLC Number:
LÜ Dongfang, CAO Yimin, SONG Lixin, XIONG Jie. Application progress on PEDOT:PSS in flexible wearable solar cells[J]. Advanced Textile Technology, 2023, 31(1): 40-53.
吕东方, 曹漪玟, 宋立新, 熊杰. PEDOT:PSS在柔性可穿戴太阳能电池中的应用进展[J]. 现代纺织技术, 2023, 31(1): 40-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202204037
[1] 李艳.基于柔性电子技术的可穿戴产品系统设计与实现[J].微型电脑应用,2018,34(10):68-70. LI Yan. Design and implementation of wearable product system based on flexible electronic technology[J]. Micro-computer Applications, 2018, 34(10): 68-70. [2] FAN X, NIE W Y, TSAI H, et al. PEDOT:PSS for flexible and stretchable electronics: Modifications, strategies, and applications[J]. Advanced Science, 2019, 6(19): 1900813. [3] 王春芳,王之顺,李洪飞,等.科技与时尚的结合:柔性可穿戴电池[J].化学教育(中英文),2018,39(20):5-10. WANG Chunfang, WANG Zhishun, LI Hongfei, et al. Combination of technology and fashion: Flexible and wearable batteries[J]. Chinese Journal of Chemical Education. 2018, 39(20): 5-10. [4] 赵颖,熊绍珍,张晓丹.新一代太阳电池概述[J].物理,2010,39(5):314-323. ZHAO Ying, XIONG Shaozhen, ZHANG Xiaodan. Next generation solar cells[J]. Physics, 2010, 39(5): 314-323. [5] WANG C, GUAN L, ZHAO D, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells[J]. ACS Energy Letters, 2017, 2(9): 2118-2124. [6] HU X, HUANG Z, LI F, et al. Nacre-inspired crystalli-zation and elastic "brick-and-mortar" structure for a wearable perovskite solar module[J]. Energy & Environmental Science, 2019, 12(3): 979-987. [7] LI J L, XIA R, QI W J, et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization[J]. Journal of Power Sources,2021, 485: 229313. [8] YANG L K, XIONG Q, LI Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency[J]. Journal of Materials Chemistry A, 2021, 9(3): 1574-1582. [9] LIU X J, ZI W, LIU S Z (Frank). P-Layer bandgap engineering for high efficiency thin film silicon solar cells[J]. Materials Science in Semiconductor Processing,2015, 39: 192-199. [10] MASSAGLIA G, CHIODONI A, MARASSO S L, et al. Electrical conductivity modulation of crosslinked composite nanofibers based on PEO and PEDOT:PSS[J]. Journal of Nanomaterials, 2018, 18: 3286901. [11] 葛茹.高导电PEDOT:PSS自支撑膜和纤维的制备及其热电应用[D].武汉:华中科技大学,2019. GE Ru. Highly Conductive PEDOT:PSS Films and Wires and Their Thermoelectric Applications[D]. Wuhan: Huazhong University of Science & Technology, 2019. [12] ELSCHNER A. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer[M], Boca Raton, FL: CRC Press, 2010:113-125. [13] JONAS F, KRAFFT W.Neue polythiophen-dispersionen, ihre herstellung und ihre verwendung: US, EP0440957 A2[P]. 1991-08-14. [14] JONAS F, MORRISON J T. 3,4-polyethylenedioxythio-phene (PEDT): Conductive coatings technical applications and properties[J]. Synthetic Metals, 1997, 85(1-3): 1397-1398. [15] ZOTTI G, ZECCHIN S, SCHIAVON G, et al. Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition and properties of poly(3,4-ethylenedioxythiophene)[J]. Macromolecules, 2003, 36: 3337-3344. [16] KYAW A, WANG D H, GUPTA V, et al. Efficient solution-processed small-molecule solar cells with inverted structure[J]. Advanced Materials, 2013, 25(17): 2397-2402. [17] FAN X, CUI C H, FANG G J, et al. Efficient polymer solar cells based on poly(3-hexylthiophene): Indene-C70 bisadduct with a MoO3 buffer layer[J]. Advanced Functional Materials, 2012, 22(3): 585-590. [18] JIANG Y Y, LIU T F, Zhou Y H. Recent advances of synthesis, properties, film fabrication methods, modifica-tions of poly(3,4-ethylenedioxythiophene), and applica-tions in solution-processed photovoltaics[J]. Advanced Functional Materials, 2020, 30(51): 2006213. [19] ANIRUDH S, GUNTHER A, DAVID L A. Role of humidity on indium and tin migration in organic photovoltaic devices[J]. Physical Chemistry Chemical Physics, 2011, 13(10): 4381-4387. [20] TSEGHAI G B, MENGISTIE D A, MALENGIER B, et al. PEDOT:PSS-based conductive textiles and their applications[J]. Sensors, 2020, 20(7): 1881. [21] HE H, OUYANG J. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT:PSS for flexible electronics applications[J]. Accounts of Materials Research, 2020, 1(2): 146-157. [22] KAYSER L V, LIPOMI D J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS[J]. Advanced Materials, 2019, 31(10): 1806133. [23] KIM N, KEE S, LEE S H, et al. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials, 2014, 26(14): 2268-2272. [24] FAN X, WANG J Z, WANG H B, et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16287-16295. [25] WANG H, AIL U, GABRIELSSON R, et al. Ionic seebeck effect in conducting polymers[J]. Advanced Energy Materials, 2015, 5(11): 1500044. [26] RIVNAY J, INAL S, COLLINS B A, et al.Structural control of mixed ionic and electronic transport in conducting polymers[J]. Nature Communications, 2016, 7: 11287. [27] XIA Y J, DAI S Y. Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells[J]. Journal of Materials Science, 2021, 32(10): 12746-12757. [28] KIM Y H, SACHSE C, MACHALA M L, et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J]. Advanced Functional Materials, 2011, 21(6): 1076-1081. [29] ZENG W W, WANG L, PENG X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702314.1-1702314.8. [30] LIU T F, JIANG Y Y, QIN M C, et al. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer[J]. Nature Communications, 2019, 10: 878. [31] GROENENDAAL L, JONAS F, FREITAG D, et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future[J]. Advanced Materials, 2000, 12(7): 481-494. [32] JONAS F, KRAFFT W. Polythiophene dispersions, their production and their use: US05300575A[P].1994-04-05. [33] Bayer Technology Services. TGA Analysis [M].Taylor and Francis Group. Boca Raton: CRC Press. 2010:123-126. [34] HUANG J, MILLER, MELLO JC. et al. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films[J]. Synthetic Metals, 2003, 139(3): 569-572. [35] ALEMU D, WEI H Y, HO K C, et al. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells[J]. Energy & Environmental Science, 2012, 5(11): 9662-9671. [36] HOON O S, JIN H S, JAE K H. Organic solar cells with CuO nanoparticles mixed PEDOT:PSS buffer layer[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27(2): 121-125. [37] QIAN M, LI M, SHI X B, et al. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification[J]. Journal of Materials Chemistry A, 2015, 3(25): 13533-13539. [38] YU J C, JI A H, JUNG E D, et al. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer[J]. Scientific Reports, 2018, 8: 1070. [39] OUYANG J, XU Q, CHU CW, et al. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxy-thiophene): poly(styrene sulfonate) film through solvent treatment[J]. Polymer, 2004, 45(25): 8443-8450. [40] KIM N, KEE S, LEE SH, et al. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials, 2014, 26(14): 2268-2272. [41] FU Q Y, LI Y D, WANG X C, et al. The importance of the molecular weight of PEDOT hole transporting materials for efficient organic solar cells[J]. Journal of Materials Chemistry C, 2020, 8(48):17185-17193. [42] DBBELIN M, MARCILLA R, SALSAMENDI M, et al. Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films[J]. Chemistry of Materials, 2007, 19(9): 2147-2149. [43] WANG T J, QI Y Q, XU J K, et al. Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film[J]. Applied Surface Science, 2005, 250(1/2/3/4): 188-194. [44] XIA Y, ZHANG H, OUYANG J. Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells[J]. Journal of Materials Chemistry, 2010, 20(43): 9740-9747. [45] WANG Y, MASAKAZU M, KAZUHIRO K, et al. Poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonate) electrodes in electrochemical cells for harvesting waste heat[J]. Energy Technology, 2020, 8(5): 1900998. [46] SAITO Y, KITAMURA T, WADA Y, et al. Application of Poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells[J]. Chemistry Letters, 2002,31(10): 1060-1061. [47] SUDHAGAR P, NAGARAJAN S, LEE Y G, et al. Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 1838-1843. [48] KE C R, CHANG C C, TING J M. Modified conducting polymer films having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 284: 489-496. [49] GEMINER P, PAVLI KOYÁ M, HATALA M, et al. The effect of secondary dopants on screen-printed PEDOT:PSS counter-electrodes for dye-sensitized solar cells [J]. Journal of Applied Polymer Science, 2022, 139(15): 51929. [50] JDIGORAS J, GUILLEN E, RAMOS F J, et al. Highly efficient flexible cathodes for dye sensitized solar cells to complement Pt@TCO coatings[J]. Journal of Materials Chemistry A, 2014, 2(9): 3175-3181. [51] TAIT J G, WORFOLK B J, MALONEY S A, et al. Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 110: 98-106. [52] VOSGUERITCHIAN M, LIPOMI D J, BAO Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes[J]. Advanced Functional Materials, 2012, 22(2): 421-428. [53] WEN R J, HUANG H H, WAN J Y, et al. High-efficiency stable flexible organic solar cells with PEDOT:PSS electrodes via superacid fumigation treatment[J]. Energy Technology, 2021, 9(11): 2100595. [54] WEI Q S, MUKAIDA M, NAITOH Y, et al. Morpho-logical change and mobility enhancement in PEDOT:PSS by adding co-solvents[J]. Advanced Materials, 2013, 25(20): 2831-2836. [55] POORKAZEM K, LIU D Y, KELLY T L. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3(17): 9241-9248. [56] VAAGENSMITH B, REZA K M, HASAN M N, et al. Environmentally friendly plasma treated PEDOT:PSS as electrodes for ITO-free perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35861-35870. [57] JIN S W, LEE Y H, YEOM K M, et al. Highly durable and flexible transparent electrode for flexible optoelectronic applications[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30706-30715. [58] XIE M L, WANG J, KANG J C, et al. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes[J]. Flexible and Printed Electronics, 2019, 4(3): 034002. [59] SUN K, LI P C, XIA Y J, et al. Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15314-15320. [60] MA H R, SHAO Y Y, ZHANG C Y, et al. Enhancing the interface contact of stacking perovskite solar cells with hexamethylenediammonium diiodide-modified PEDOT:PSS as an electrode[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42321-42327. [61] YIN Z G, WEI J J, ZHENG Q D. Interfacial materials for organic solar cells: Recent advances and perspectives[J]. Advanced Science, 2016, 3(8): 1500362-1500369. [62] BILBY D, FRIEBERG B, KRAMADHATI S, et al. Design considerations for electrode buffer layer materials in polymer solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14964-14974. [63] MANDERS J R, TSANG S W, MICHAEL J H, et al. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells[J]. Advanced Functional Materials, 2013, 23(23): 2993-3001. [64] 袁峰,周丹,谌烈,等.有机太阳能电池空穴传输材料的研究进展[J].功能高分子学报,2018,31(6):530-539. YUAN Feng, ZHOU Dan, CHEN Lie, et al. Research progress of hole transport materials for organic solar cells[J]. Journal of Functional Polymers., 2018, 31(6): 530-539. [65] ZHANG K, GAO K, XIA R X, et al. High-performance polymer tandem solar cells employing a new n-type conjugated polymer as an interconnecting layer[J]. Advanced Materials, 2016, 28(24): 4817-4823. [66] LIN W K, SHUI-HSIANG S U, HUANG C L, et al. Efficiency enhancement of solution-processed flexible organic solar cells[J]. IEICE Transactions on Electronics, 2015, 98(2): 147-151. [67] CASTRO M F, MAZZOLINI E, SONDERGAARD R R, et al. Flexible ITO-free roll-processed large-area nonfullerene organic solar cells based on P3HT:O-IDTBR[J]. Physical Review Applied, 2020, 14(3): 034067. [68] ZENG M, WANG X J, MA R J, et al. Dopamine semiquinone radical doped PEDOT:PSS: Enhanced conductivity, work function and performance in organic solar cells[J]. Advanced Energy Materials, 2020, 10(25): 2000743. [69] POPOOLA I K, GONDAL M A, QAHTAN T F. Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3127-3151. [70] 周移,林琳,王艳丽,等.钙钛矿太阳能电池的研究进展[J].材料导报,2017,31(S2):23-29. ZHOU Yi, LIN Lin, WANG Yanli, et al. Research progress on the perovskite solar cells[J]. Materials Report, 2017, 31(S2): 23-29. [71] HU L J, LI M, YANG K, et al. PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells[J]Journal of Materials Chemistry A, 2018, 6(34): 16583-16589. [72] CHEN W H, QIU L L, ZHANG P Y, et al. Simple fabrication of a highly conductive and passivated PEDOT:PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells[J]. Journal of Materials Chemistry C, 2019, 7(33): 10247-10256. [73] LIANG P W, LIAO C Y, CHUEH C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014, 26(22): 3748-3754. [74] HU Y C, TANG Y, ZHANG Z H, et al. Improving the efficiency of inverted perovskite solar cells by Bis(acetylacetonato)dioxomolybdenum(VI)-doped PEDOT:PSS[J]. Materials Letters, 2022, 306: 130911. |
[1] | ZHOU Suibo, WANG Zheshan, HU Jianchen, ZHANG Keqin. Preparation of the fabric electrode and its application in spacer fabric-based triboelectric nanogenerators [J]. Advanced Textile Technology, 2023, 31(1): 54-63. |
[2] | FENG Yuan, ZHOU Jinli, YANG Hongying, WANG Zheng, XIONG Fan, DU Lixin. Application progress of embroidery technology in smart textiles [J]. Advanced Textile Technology, 2023, 31(1): 82-91. |
[3] | ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles [J]. Advanced Textile Technology, 2022, 30(4): 1-11. |
[4] | ZHANG Yingxin, XU Lei, WANG Dawei, LI Nan, YANG Yunfei. Research progress of fabric electrode in bioelectric signal monitoring [J]. Advanced Textile Technology, 2022, 30(4): 42-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||