Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (1): 18-25.DOI: 10.19398/j.att.202104011
• Comprehensive Review • Previous Articles Next Articles
LI Jinyua, YANG Yunchub,c(), LIU Mingminga
Received:
2021-04-06
Online:
2022-01-10
Published:
2021-07-08
Contact:
YANG Yunchu
通讯作者:
杨允出
作者简介:
李金屿(1998-),女,河南周口人,硕士研究生,主要从事服装热舒适性能方面的研究。
基金资助:
CLC Number:
LI Jinyu, YANG Yunchu, LIU Mingming. Research progress in the prediction of heat transfer properties of fabrics based on structural characteristics[J]. Advanced Textile Technology, 2022, 30(1): 18-25.
李金屿, 杨允出, 刘鸣茗. 基于结构特征的织物热传递性能预测研究进展[J]. 现代纺织技术, 2022, 30(1): 18-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202104011
数学理论模型来源 | 相同点 | 不同点 | 适用范围 |
---|---|---|---|
文献[6]、[16]-[20] | 均基于串-并联原理 | 仅考虑纤维和空气体积占比的 织物结构特征 | 适用于简单结构的 织物热导率计算 |
文献[21]、[22] | 考虑多组分复合材料 | 适用于求解复合材料 织物的热导率 | |
文献[23]、[24] | 考虑织物微观结构参数,且 文献[23]考虑辐射换热 | 适用于根据纤维或纱线结构 参数计算织物热阻 |
Tab.1 Comparison of characteristics of different mathematical theoretical models
数学理论模型来源 | 相同点 | 不同点 | 适用范围 |
---|---|---|---|
文献[6]、[16]-[20] | 均基于串-并联原理 | 仅考虑纤维和空气体积占比的 织物结构特征 | 适用于简单结构的 织物热导率计算 |
文献[21]、[22] | 考虑多组分复合材料 | 适用于求解复合材料 织物的热导率 | |
文献[23]、[24] | 考虑织物微观结构参数,且 文献[23]考虑辐射换热 | 适用于根据纤维或纱线结构 参数计算织物热阻 |
[1] | 王丹, 王东晓, 丁一凡, 等. 织物特性对热湿传递性能的影响[J]. 轻纺工业与技术, 2020, 49(11):17-18. |
WANG Dan, WANG Dongxiao, DING Yifan, et al. Influence of fabric property on its thermal and moisture transfer performances[J]. Light and Textile Industry and Technology, 2020, 49(11): 17-18. | |
[2] | 高帅, 庞方丽. 针织物组织结构对其热传递性能的影响[J]. 山东纺织科技, 2020, 61(5):9-10. |
GAO Shuai, PANG Fangli. The influence of knitted fabric structure on its heat transfer performance[J]. Shandong Textile Science & Technology, 2020, 61(5): 9-10. | |
[3] | 刘让同, 刘淑萍, 李亮, 等. 织物结构对机织物热传导的影响[J]. 上海纺织科技, 2017, 45(6):4-7. |
LIU Rangtong, LIU Shuping, LI Liang, et al. Effect of fabric structure on heat conduction of woven fabrics[J]. Shanghai Textile Science & Technology, 2017, 45(6): 4-7. | |
[4] | 张鹤誉, 郑振荣, 赵晓明, 等. 玻璃纤维交织织物的热传递数值模拟[J]. 纺织学报, 2015, 36(3):28-31,42. |
ZHANG Heyu, ZHENG Zhenrong, ZHAO Xiaoming, et al. Numerical simulation of heat transfer on glass fiber woven fabric[J]. Journal of Textile Research, 2015, 36(3): 28-31,42. | |
[5] | 郑振荣, 张玉双, 王红梅, 等. 基于纱线交织结构的织物传热模拟方法[J]. 工程热物理学报, 2016, 37(9):1918-1925. |
ZHENG Zhenrong, ZHANG Yushuang, WANG Hongmei, et al. A numerical simulation on heat transfer of fabric based on the yarn interweaved structure[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1918-1925. | |
[6] | 蔡彦, 杨允出, 钱江瑞. 基于结构参数的机织物等效热导率数学建模[J]. 现代纺织技术, 2021, 29(2):43-49. |
CAI Yan, YANG Yunchu, QIAN Jiangrui. Conductivity of woven fabrics based on structural parameters[J]. Advanced Textile Technology, 2021, 29(2): 43-49. | |
[7] | 谢璐璐, 丛杉, 谢倩. 多孔织物热湿耦合模拟研究与发展趋势[J]. 丝绸, 2014, 51(6):41-47. |
XIE Lulu, CONG Shan, XIE Qian. Simulation study on heat and moisture coupling of porous fabrics[J]. Journal of Silk, 2014, 51(6) :41-47. | |
[8] | 王红梅, 郑振荣, 张楠楠, 等. 多孔纤维织物热湿传递数值模拟的研究进展[J]. 纺织学报, 2016, 37(11):159-165. |
WANG Hongmei, ZHENG Zhenrong, ZHANG Nannan, et al. Research progress of numerical simulation on heat and moisture transfer in porous textiles[J]. Journal of Textile Research, 2016, 37(11): 159-165. | |
[9] | BHATTACHARJEE D, KOTHARI VK. Measurement of thermal resistance of woven fabrics in natural and forced convections[J]. Research Journal of Textile and Apparel, 2008, 12(2): 39-49. |
[10] |
AFZAL A, HUSSAIN T, MOHSIN M, et al. Statistical models for predicting the thermal resistance of polyester/cotton blended interlock knitted fabrics[J]. International Journal of Thermal Sciences, 2014, 85: 40-46.
DOI URL |
[11] | 崔岩, 卢昀坤, 曹雷刚, 等. 面向材料基因工程的人工神经网络研究[J]. 热加工工艺, 2018, 47(12):13-16. |
CUI Yan, LU Yunkun, CAO Leigang, et al. Research on artificial neural network for material genetic engineering[J]. Hot Working Technology, 2018, 47(12): 13-16. | |
[12] | 康靓, 米晓希, 王海莲, 等. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21):21172-21179. |
KANG Jing, MI Xiaoxi, WANG Hailian, et al. Research progress of artificial neural networks in material science[J]. Materials Reports, 2020, 34(21): 21172-21179. | |
[13] |
MAJUMDAR A. Modelling of thermal conductivity of knitted fabrics made of cotton-bamboo yarns using artificial neural network[J]. Journal of the Textile Institute, 2011, 102(9): 752-762.
DOI URL |
[14] | GUENESOGLU S, KAPLANGIRAY B. Applying the artifical neural network to predict the thermal properties of knitted fabrics[J]. Vlakna a Textile, 2019, 26(1): 41-44. |
[15] |
ALIBI H, FAYALA F, JEMNI A, et al. Modeling of thermal conductivity of stretch knitted fabrics using an optimal neural networks system[J]. Journal of Applied Sciences, 2012, 12(22): 2283-2294.
DOI URL |
[16] |
LEVY F L. A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures[J]. International Journal of Refrigeration, 1981, 4(4): 223-225.
DOI URL |
[17] |
BOGATY H, HOLLIES N R S, HARRIS M. Some Thermal Properties of Fabrics[J]. Textile Research Journal, 1957, 27(6): 445-449.
DOI URL |
[18] |
MAXWELL J C. A treatise on electricity and magnetism[J]. Nature, 1873, 7(182): 478-480.
DOI URL |
[19] | EUCKEN A. Allgemeine gesetzmigkeiten für das wrmeleitvermgen verschiedener stoffarten und aggregatzustnde[J]. Forschung Auf Dem Gebiet Des Ingenieurwesens A, 1940, 11(1):6-20. |
[20] |
HALAOUA S, ROMDHANI Z, JEMNI A. Effect of textile woven fabric parameters on its thermal properties[J]. Industria Textila, 2019, 70(1):15-20.
DOI URL |
[21] |
SEO B H, CHO Y J, YOUN J R, et al. Model for thermal conductivities in spun yarn carbon fabric composites[J]. Polymer Composites, 2005, 26(6): 791-798.
DOI URL |
[22] |
WANG J F, CARSON J K, NORTH M F, et al. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases[J]. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2389-2397.
DOI URL |
[23] |
KOTHARI V K, BHATTACHARJEE D. Prediction of thermal resistance of woven fabrics. Part I: Mathematical model[J]. Journal of the Textile Institute, 2008, 99(5): 421-432.
DOI URL |
[24] | WEI J, XU S J, LIU H, et al. Simplified model for predicting fabric thermal resistance according to its microstructural parameters[J]. Fibres & Textiles in Eastern Europe, 2015, 23(4): 57-60. |
[25] |
SIDDIQUI M O R, SUN D M. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013, 75: 45-51.
DOI URL |
[26] |
SUN Y C, CHEN X G, CHENG Z H, et al. Study of heat transfer through layers of textiles using finite element method[J]. International Journal of Clothing Science and Technology, 2010, 22(2/3): 161-173.
DOI URL |
[27] |
ZHENG Z R, ZHANG N N, ZHAO X M. Simulation of heat transfer through woven fabrics based on the fabric geometry model[J]. Thermal Science, 2018, 22: 2815-2825.
DOI URL |
[28] | 张洁, 刘新金, 谢春萍, 等. 织物结构参数对热传递性能影响的模拟分析[J]. 丝绸, 2020, 57(2):13-18. |
ZHANG Jie, LIU Xinjin, XIE Chunping, et al. Simulation analysis of the influence of fabric structure parameters on heat transfer properties[J]. Journal of Silk, 2020, 57(2): 13-18. | |
[29] | 蔡彦, 陈怡充, 严航宇, 等. 织物接触冷暖感的模拟分析[J]. 毛纺科技, 2020, 48(5):97-102. |
CAI Yan, CHEN Yichong, YAN Hangyu, et al. Simulation analysis of the contact warm-cool feeling of fabric[J]. Wool Textile Journal, 2020, 48(5): 97-102. | |
[30] |
WU J J, TANG H, WU Y X. A predictive model of thermal conductivity of plain woven fabrics[J]. Thermal Science, 2017, 21(4): 1627-1632.
DOI URL |
[31] | KANAT Z E, ÖZDIL N, MARMARALI A. Prediction of thermal resistance of the knitted fabrics in wet state by using multiple regression analysis[J]. Tekstil VeKonfeksiyon, 2014, 24(3):291-297. |
[32] | MANSOOR T, HES L, BAJZIK V. A new approach for thermal resistance prediction of different composition plain socks in wet state (Part 2)[J]. Autex Research Journal, 2020, 21(2):238-247. |
[33] |
NEVES S F, CAMPOS J B L M, MAYOR T S. Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases[J]. Applied Thermal Engineering, 2017, 117:109-121.
DOI URL |
[34] | 孙洁, 孙娜, 周建安, 等. 相变微胶囊及其功能纺织品研究进展[J]. 服装学报, 2019, 4(3):189-200. |
SUN Jie, SUN Na, ZHOU Jian'an, et al. Research and development of phase change material microcapsules and functional textiles[J]. Journal of Clothing Research, 2019, 4(3): 189-200. | |
[35] | 朱雯, 苏云, 陈若颖, 等. 相变微胶囊涂层织物在热防护服中的应用[J]. 中国安全科学学报, 2020, 30(12):180-185. |
ZHU Wen, SU Yun, CHEN Ruoying, et al. Application of fabric coated with phase change microcapsule in thermal protective clothing[J]. China Safety Science Journal, 2020, 30(12): 180-185. | |
[36] | 肖尧, 余弘, 李卫东, 等. 相变调温纺织品研究现状及评价方法[J]. 纺织检测与标准, 2019, 5(4):1-5. |
XIAO Yao, YU Hong, LI Weidong, et al. Research status and evaluation method of phase change thermostat textiles[J]. Textile Testing and Standard, 2019, 5(4): 1-5. | |
[37] | 李凤志, 朱云飞, 王鹏飞, 等. 织物-多种相变微胶囊复合材料热特性数值模拟[J]. 南京航空航天大学学报, 2009, 41(4):456-460. |
LI Fengzhi, ZHU Yunfei, WANG Pengfei, et al. Numerical simulation on thermal properties of textile with multi-type PCM microcapsules[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(4): 456-460. | |
[38] | 朱方龙. 附加相变材料层的热防护服装传热数值模拟[J]. 应用基础与工程科学学报, 2011, 19(4):635-643. |
ZHU Fanglong. Numerical simulation of heat transfer for thermal protective clothing incorporating phase change material layer[J]. Journal of Basic Science and Engineering, 2011, 19(4): 635-643. | |
[39] |
JAWORSKI M. Mathematical model of heat transfer in PCM incorporated fabrics subjected to different thermal loads[J]. Applied Thermal Engineering, 2019, 150: 506-511.
DOI URL |
[40] | 陈旭, 吴炳洋, 范滢, 等. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(7):163-168. |
CHEN Xu, WU Bingyang, FAN Ying, et al. Numerical simulation of low temperature protection process for heat storage fabrics[J]. Journal of Textile Research, 2019, 40(7): 163-168. | |
[41] |
IQBAL K, SUN D M, STYLIOS G K, et al. FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials[J]. Fibers and Polymers, 2015, 16(11):2497-2503.
DOI URL |
[1] | Luo Hao, Feng Hao, WU Wenyunjie. Effects of Differences in Cotton Fabric Structures on Moisture-absorption and Quick-drying Performance [J]. Advanced Textile Technology, 2024, 32(7): 80-85. |
[2] | LIU Yaqiong, LI Nan, LI Wen, WANG Lijun. Influence of clothing structure design on electromagnetic shielding effectiveness [J]. Advanced Textile Technology, 2022, 30(4): 193-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||