[1] XIONG C, ZHENG C, LI B, et al. Wood-based micro-spring composite elastic material with excellent electroche-mical performance, high elasticity and elastic recovery rate applied in supercapacitors and sensors[J]. Industrial Crops and Products, 2022, 178: 114565. [2] PARK S, CHUNG T D, KIM H C. Nonenzymatic glucose detection using mesoporous platinum[J]. Analytical Chemistry, 2003, 75(13): 3046-3049. [3] AMIN K M, MUENCH F, KUNZ U, et al. 3D NiCo-Layered double Hydroxide@Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing[J].Journal of Colloid and Interface Science, 2021, 591: 384-395. [4] WANG J, THOMAS D F, CHEN A. Nonenzymatic electro-chemical glucose sensor based on nanoporous Pt-Pb networks[J]. Analytical Chemistry, 2008, 80(4): 997-1004. [5] 王悦,项东,马绍群,等.硫化铜/活性炭无酶葡萄糖电化学传感研究[J].山东建筑大学学报,2022,37(2):76-86. WANG Yue, XIANG Dong, MA Shaoqun, et al. Study on non-enzymatic glucose electrochemical sensing of copper sulfide/activated carbon[J]. Journal of Shandong Jianzhu University 2022, 37(2): 76-86. [6] 方斌,杜晓伟,赵丽,等.基于石墨烯/氮化镓肖特基异质结的葡萄糖传感特性研究[J].赣南医学院学报,2022,42(3):275-281,295. FANG Bin, DU Xiaowei, ZHAO Li, et al. Glucose sensing properties based on graphene/gallium nitride schottky heterojunction[J].Journal of Gannan Medical University, 2022, 42(3): 275-281, 295. [7] JANG K B, PARK K R, KIM K M, et al. Synthesis of NiCo2O4 nanostructures and their electrochemial properties for glucose detection[J]. Nanomaterials (Basel), 2020, 11(1): 55. [8] 杨国程,汪晓阳,宿华林.硅钨镍基修饰复合纳米纤维电极电化学传感葡萄糖研究[J].长春工业大学学报,2019,40(5):417-426,521. YANG Guocheng, WANG Xiaoyang, SU Hualin. Silicon-tungsten-nickel-modified composite nanofiber based electro-chemical sensor towards glucose[J]. Journal of Changchun University of Technology, 2019, 40(5): 417-426, 521. [9] HWANG D W, LEE S, SEO M, et al. Recent advances in electrochemical non-enzymatic glucose sensors: A review[J]. Analytica Chimica Acta, 2018, 1033: 1-34. [10] TIAN K, BASKARAN K, TIWARI A. Nonenzymatic glucose sensing using metal oxides: Comparison of CuO, Co3O4, and NiO[J]. Vacuum, 2018, 155: 696-701. [11] PAN Z, YANG J, SONG W, et al. Au@Ag nanoparticle sensor for sensitive and rapid detection of glucose[J]. New Journal of Chemistry, 2021, 45(6): 3059-3066. [12] VINOTH V, PUGAZHENTHIRAN N, VISWANA-THAN MANGALARAJA R, et al. Development of an electroche-mical enzyme-free glucose sensor based on self-assembled Pt-Pd bimetallic nanosuperlattices[J]. The Analyst, 2021, 145(24): 7898-7906. [13] LIN F Y, LEE P Y, CHU T F, et al. Neutral nonenzy-matic glucose biosensors based on electrochemically deposited Pt/Au nanoalloy electrodes[J]. International Journal of Nanomedicine, 2021, 16: 5551-5563. [14] SUN S, SHI N, LIAO X, et al. Facile synthesis of CuO/Ni(OH)2 on carbon cloth for non-enzymatic glucose sensing[J]. Applied Surface Science, 2020, 529: 147067. [15] CHEN C, RAN R, YANG Z, et al. An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres[J]. Sensors and Actuators B: Chemical, 2018, 256: 63-70. [16] CHENG S, DELACRUZ S, CHEN C, et al. Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing[J]. Sensors and Actuators B: Chemical, 2019: 298: 126860. [17] LIU S, HUI K S, HUI K N. Flower-like copper cobaltite nanosheets on graphite paper as high-performance superca-pacitor electrodes and enzymeless glucose sensors[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3258-3267. [18] GUO Q, ZENG W, LI Y. Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam[J]. Materials Letters, 2019, 256: 126603. [19] LI W, QI H, WANG B, et al. Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose[J]. Microchimica Acta, 2018, 185(2): 124. [20] CHEN J, YIN H, ZHOU J, et al. Efficient nonenzymatic sensors based on Ni-MOF microspheres decorated with Au nanoparticles for glucose detection[J]. Journal of Electronic Materials, 2020, 49(8): 4754-4763. [21] 唐丽萍,赵亚萍,蔡再生.水热生长镍钴硫化物在柔性无酶葡萄糖传感器中的应用[J].产业用纺织品,2021,39(1):62-66. TANG Liping, ZHAO Yaping, CAI Zaisheng. Application of hydrothermal synthesized nickel-cobalt sulfide in flexible enzymatic-free glucose sensors[J]. Technical Textiles, 2021, 39(1): 62-66. [22] JEONG H, KWAC L K, HONG C G, et al. Direct growth of flower like-structured Cu-Fe oxide on graphene supported nickel foam as an effective sensor for glucose determination[J]. Materials Science and Engineering: C, 2021, 118: 111510. [23] HUANG W, CAO Y, CHEN Y, et al. Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor[J]. Applied Surface Science, 2017, 396: 804-811. [24] ZHANG H, LIU S. Nanoparticles-assembled NiO nano-sheets templated by graphene oxide film for highly sensitive nonenzymatic glucose sensing[J]. Sensors and Actuators B: Chemical, 2017, 238: 788-794. [25] ZHANG Y, XU F, SUN Y, et al. Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: A two dimensional nanocomposite for enzyme-free glucose sensing[J]. Journal of Materials Chemistry, 2011, 21(42): 3118-3126. [26] NAIK K K, GANGAN A, Chakraborty B, et al. Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4-Pd nanosheets: Experimental and DFT investigations[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23894-23903. [27] SARAF M, NATARAJAN K, MOBIN S M. Multifunctional porous NiCo2O4 nanorods: Sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations[J]. New Journal of Chemistry, 2017, 41(17): 9299-9313. |