Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (3): 121-127.

Previous Articles     Next Articles

Preparation and properties of SBS/CNTs elastic conductive composite fiber

  

  1. College of Textile & Clothing, Qingdao University, Qingdao 266071, China
  • Received:2022-09-02 Online:2023-05-10 Published:2023-05-25

SBS/CNTs弹性导电复合纤维的制备与性能

  

  1. 青岛大学纺织服装学院,山东青岛266071
  • 通讯作者: 周彦粉,E-mail: yanfen.zhou@qdu.edu.cn
  • 作者简介:李东亮(1999—),男,山东德州人,硕士研究生,主要从事基于热塑性弹性体的高弹性导电复合纤维方面的研究。

Abstract: In recent years, with the progress of science and technology, wearable electronic products have been used more and more in portable medical monitoring devices, electronic skin, portable electronic devices and other fields. Strain sensors, as the core components of intelligent wearable devices, have received extensive attention. Traditional strain sensors based on metal and semiconductor materials have poor extensibility and unstable conductivity, which limits their use in the intelligent wearable field. Conductive polymer composite fiber, with the advantages of being easy to bend, can be attached to skin, and can be braided, so its application in strain sensors has been rapidly developed.
In order to prepare flexible strain sensors with good tensile property, the SBS/CNTs elastic conductive composite fiber was prepared by wet spinning, using polystyrene butadiene styrene triblock thermoplastic elastomer (SBS) with good tensile property as the matrix and carbon nanotubes (CNTs) with high conductivity, good mechanical properties and flexibility as the conductive filler. The influence of the mass ratio of CNTs with two different aspect ratios on the morphology, mechanical properties, electrical conductivity and tensile resistance response of SBS/CNTs elastic conductive composite fibers were studied. The results showed that the cross section of SBS/CNTs elastic conductive composite fiber was bean-shaped, and porous structure appeared near the fiber center due to solvent exchange during wet spinning. When the ratio of long CNTs (10~30 µm) to short CNTs (0.5~2.0 µm) was 4:1, the conductivity of SBS/CNTs elastic conductive composite fiber was the highest (0.04065 S/m). The maximum inductive strain of the strain sensor based on this fiber was 70.2%, and it had good sensitivity and stability. The strain sensor based on SBS/CNTs elastic conductive composite fiber showed good response behavior in monitoring various human body activities including the knee, wrist, finger and elbow.
Although the conductive polymer composite fiber based strain sensor has more excellent tensile properties, there are still some problems to be solved. For example, carbon nanotubes and other nano sized conductive fillers are easy to agglomerate in the polymer matrix. How to improve their dispersion by surface modification or adding compatibilizers, and how to improve their interfacial bonding with the polymer matrix are problems to be solved. In addition, the performance of the fiber is affected not only by the material performance, but also by the spinning process parameters. Through the optimization of the spinning process, it is expected to prepare conductive composite fibers with better performance. The solution of these problems will better promote the practical application of flexible strain sensors.

Key words: SBS, conductive fiber, high elasticity, carbon nanotubes, wet spinning, strain sensing

摘要: 为了制备具有较好拉伸性的应变传感器,以聚苯乙烯-丁二烯-苯乙烯三嵌段热塑性弹性体(SBS)为基体,碳纳米管(CNTs)为导电填料,通过湿法纺丝制备了SBS/CNTs弹性导电复合纤维,研究了两种不同长径比CNTs配比对SBS/CNTs弹性导电复合纤维微观形貌、力学性能、导电性和拉伸-电阻响应行为的影响规律。结果表明:SBS/CNTs弹性导电复合纤维截面呈碗豆状,靠近纤维中心位置出现多孔结构;长CNTs(10~30 µm)与短CNTs(0.5~2.0 µm)的比例为4∶1时,SBS/CNTs弹性导电复合纤维的电导率最高(0.04065 S/m),基于此纤维的应变传感器的最大可感应应变为70.2%。基于SBS/CNTs弹性导电复合纤维的应变传感器可以用于膝盖、手腕、手指、肘部等人体不同部位的活动监测。

关键词: SBS, 导电纤维, 高弹性, 碳纳米管, 湿法纺丝, 应变传感

CLC Number: