Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (3): 274-284.
Received:
2022-10-10
Online:
2023-05-10
Published:
2023-05-26
通讯作者:
苑洁,E-mail:yuanjie@zstu.edu.cn
作者简介:
翟淑娜(1997—),女,山东临沂人,硕士研究生,主要从事织物压力舒适度脑感知方面的研究。
基金资助:
CLC Number:
ZHAI Shunaa, LOU Lina, b, c, WANG Qicaid, YUAN Jiea, b. Research progress of functional magnetic resonance imaging in brain perception induced by fabric stimulation[J]. Advanced Textile Technology, 2023, 31(3): 274-284.
翟淑娜, 娄琳, 王其才, 苑洁. 功能磁共振成像技术在织物刺激脑感知中的研究进展[J]. 现代纺织技术, 2023, 31(3): 274-284.
[1] MALEK A S, ELNAHRAWY A, ANWAR H, et al. From fabric to smart T-shirt: Fine tuning an improved robust system to detect arrhythmia[J]. Textile Research Journal, 2022, 92(17/18): 3204-3220. [2] AWAIS M, KRZYWINSKI S, WENDT E. A novel modeling and simulation approach for the prediction of human thermophysiological comfort[J]. Textile Research Journal, 2021, 91(5/6): 691-705. [3] KıRCı F, KARAMANLARGIL E, DURU S C, et al. Comfort properties of medical compression stockings from biodesigned and cotton fibers[J]. Fibers and Polymers, 2021, 22(10): 2929-2936. [4] CAMILLIERI B, BUENO M A, FABRE M, et al. From finger friction and induced vibrations to brain activation: Tactile comparison between real and virtual textile fabrics[J]. Tribology International, 2018, 126: 283-296. [5] TANG W, ZHANG M M, CHEN G F, et al. Investigation of tactile perception evoked by ridged texture using ERP and non-linear methods[J].Frontiers in Neuroscience, 2021, 15: 676837. [6] 苑洁. 基于fMRI的织物接触压力舒适性脑感知表征[D]. 上海: 东华大学, 2019: 78-79. YUAN Jie. Brain Perception Representation of Fabric Contact Pressure Comfort Based on fMRI[D].Shanghai: Donghua University, 2019: 107-116. [7] LIU Y J, CHEN D S. An analysis on EEG power spectrum under pressure of girdle[J]. International Journal of Clothing Science and Technology, 2015, 27(4): 495-505. [8] 尹玲. 基于心率变异和脑波分析的塑身腹带着装压力舒适性研究[D]. 上海: 东华大学, 2012: 107-116. YIN Ling. Study on Pressure Comfort of Body Shaping Abdominal Band Based on HRV and EEG Analysis[D].Shanghai: Donghua University, 2012: 107-116. [9] 夏羽. 基于神经电生理学的丝织物触感评价和认知研究[D]. 苏州: 苏州大学, 2017: 28-32. XIA Yu. Research on Tactile Evaluation of Silk Fabrics Based on Neural Electrophysiology[D]. Suzhou: Soochow University, 2017: 28-32. [10] TANG W, LIU R, SHI Y B, et al. From finger friction to brain activation: Tactile perception of the roughness of gratings[J]. Journal of Advanced Research, 2020, 21: 129-139. [11] 唐玮, 张梅梅, 刘瑞, 等. 不同尖锐度纹理形状的摩擦触觉感知与表征研究[J]. 摩擦学学报, 2021, 41(3): 373-381. TANG Wei, ZHANG Meimei, LIU Rui, et al. Friction tactile perception and representation of texture shapes with different sharpness[J]. Tribology, 2021, 41(3): 373-381. [12] TANG W, LU X Y, CHEN S, et al. Tactile perception of skin: Research on late positive component of event-related potentials evoked by friction[J]. The Journal of the Textile Institute, 2020, 111(5): 623-629. [13] 刘陶峰, 李一员, 李炜, 等. 确定性纹理表面特征高度对皮肤摩擦感知的影响[J]. 西南交通大学学报, 2020, 55(2): 372-378. LIU Taofeng, LI Yiyuan, LI Wei, et al. Effect of deterministic texture surface feature height on skin friction perception[J]. Journal of Southwest Jiaotong University, 2020,55 (2): 372-378. [14] LIU Y J, CHEN D S. The influence of clothing pressure exerted by girdle on inhibition ability of young females[J]. International Journal of Clothing Science and Technology, 2016, 28(5): 712-722. [15] 陈雁, 李栋高. 服装颜色的感觉生理研究[J]. 纺织学报, 2004, 25(3): 68-69. CHEN Yan, LI Donggao. Study on sensory physiology of clothing color[J]. Journal of textile, 2004, 25(3): 68-69. [16] STYLIOS G K, CHEN M X. The concept of psychotextiles; interactions between changing patterns and the human visual brain, by a novel composite SMART fabric[J]. Materials, 2020, 13(3): 725. [17] 莫换平. 纺织品冷暖色搭配视觉认知研究[D].苏州: 苏州大学, 2020: 28-46. MO Huanping. Study on the Visual Cognition of Textile Cold and Warm Color Matching[D]. Suzhou: Soochow University, 2020: 28-46. [18] DING M, SONG M J, PEI H N, et al. The emotional design of product color: An eye movement and event-related potentials study[J]. Color Research & Application, 2021, 46(4): 871-889. [19] OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24): 9868-9872. [20] FOX P T, RAICHLE M E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(4): 1140-1144. [21] PAULING L, CORYELL C D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1936, 22(4): 210-216. [22] BUXTON R B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques[M]. 2nd ed. Cambridge: Cambridge University Press, 2009. [23] FRISTON K J, Ashburner J, Kiebel S, et al. Statistical Parametric Mapping: the Analysis of Functional Brain Images[M]. Amsterdam: Elsevier/Academic Press, 2007. [24] ASHBURNER J. A fast diffeomorphic image registration algorithm[J]. Neuroimage, 2007, 38(1): 95-113. [25] Poldrack R A, Mumford J A, Nichols T E. Handbook of Functional MRI Data Analysis[M]. Cambridge: Cambridge University Press, 2011. [26] YUAN J, YU W D, WANG Q C, et al. A potential brain zone perceiving a comfortable fabric pressure touch[J]. Textile Research Journal, 2019, 89(17): 3499-3505. [27] WANG Q C, TAO Y, ZHANG Z W, et al. Representations of fabric hand attributes in the cerebral cortices based on the Automated Anatomical Labeling atlas[J]. Textile Research Journal, 2019, 89(18): 3768-3778. [28] WANG Q C, TAO Y, YUAN J, et al. Application of brodmann′s area maps for cortical localization of tactile perception evoked by fabric touch[J]. Fibers and Polymers, 2019, 20(4): 876-885. [29] 苑洁, 娄琳, 王其才. 织物触觉舒适度大脑感知技术研究进展[J]. 纺织学报, 2022, 43(9): 211-217. YUAN Jie, LOU Lin, WANG Qicai. Research progress of brain perception technology for tactile comfort of fabric [J]. Journal of textile, 2022, 43(9): 211-217. [30] YEON J, KIM J, RYU J, et al. Human brain activity related to the tactile perception of stickiness[J]. Frontiers in Human Neuroscience, 2017, 11: 8. [31] 苑洁, 于伟东, 陈克敏. 基于功能磁共振的织物触压舒适度脑感知研究进展[J]. 纺织学报, 2017, 38(10): 146-152. YUAN Jie, YU Weidong, CHEN Kemin. Research progress of brain perception of fabric touch comfort based on functional magnetic resonance[J]. Journal of textile, 2017, 38(10): 146-152. [32] GAREY L. Brodmann's ‘localisation in the cerebral cortex’[J]. The Journal of Anatomy, 2000, 196(3): 493-496. [33] YUAN J, XU C L, WANG Q C, et al. Brain signal changes of sensory cortex according to surface roughness of boneless corsets[J]. Textile Research Journal, 2020, 90(1): 76-90. [34] GURTUBAY ANTOLIN A, LEON CABRERA P, RODRIGUEZ FORNELLS A. Neural evidence of hierarchical cognitive control during haptic processing: An fMRI study[J]. eNeuro, 2018, 5(6): 295-318. [35] RAJAEI N, AOKI N, TAKAHASHI H K, et al. Brain networks underlying conscious tactile perception of textures as revealed using the velvet hand illusion[J]. Human Brain Mapping, 2018, 39(12): 4787-4801. [36] SO Y, KIM S P, KIM J. Perception of surface stickiness in different sensory modalities: an functional MRI study[J]. Neuroreport, 2020, 31(5): 411-415. [37] WANG Q, YU W, HE N, et al. Investigation of the cortical activation by touching fabric actively using fingers[J]. Skin Research and Technology, 2015, 21(4): 444-448. [38] WANG Q C, YU W D, CHEN K M, et al. Brain cognitive comparison of fabric touch on human glabrous and hairy skin[J]. Textile Research Journal, 2016, 86(3): 318-324. [39] WANG Q, YU W, CHEN K, et al. Brain discriminative cognition on the perception of touching different fabric using fingers actively[J]. Skin Research and Technology, 2016, 22(1): 63-68. [40] KITADA R, DOIZAKI R, KWON J, et al. Brain networks underlying tactile softness perception: a functional magnetic resonance imaging study[J]. NeuroImage, 2019, 197: 156-166. [41] WANG Q C, TAO Y, SUN T, et al. Analysis of brain functional response to cutaneous prickling stimulation by single fiber[J]. Skin Research and Technology, 2021, 27(4): 494-500. [42] YUAN J, YU W D, CHEN K M, et al. A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure[J]. Textile Research Journal, 2019, 89(16): 3312-3325. [43] 童新宇,吴新丽,李思儒,等.人手指振动触觉感知的短时记忆特性[J].生理学报,2020,72(5):643-650. TONG Xinyu, WU Xinli, Li Siru, et al. Short-term memory characteristics of tactile perception of human finger vibration [J]. Acta Physiologica Sinica, 2020 and 72 (5): 643-650. [44] ZHANG J, TAO H, JIANG X W. Cognitive Behavior Difference Based on Sensory Analysis in Tactile Evaluation of Fabrics[M]. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2019: 430-437. [45] CHUNG Y G, HAN S W, KIM H S, et al. Adaptation of cortical activity to sustained pressure stimulation on the fingertip[J]. BMC Neuroscience, 2015, 16: 71. [46] OISHI Y, IMAMURA T, SHIMOMURA T, et al. Visual texture agnosia in dementia with Lewy bodies and Alzheimer's disease[J]. Cortex, 2018, 103: 277-290. [47] CANT J S, XU Y D. The contribution of object shape and surface properties to object ensemble representation in anterior-medial ventral visual cortex[J]. Journal of Cognitive Neuroscience, 2017, 29(2): 398-412. [48] LACEY S, SATHIAN K. Visuo-haptic multisensory object recognition, categorization, and representation[J]. Frontiers in Psychology, 2014, 5: 730. [49] SUZUKI K. Visual texture agnosia in humans[J]. Brain and Nerve= Shinkei Kenkyu No Shinpo, 2015, 67(6): 701-709. [50] JACOBS R H A H, BAUMGARTNER E, GEGENFURTNER K R. The representation of material categories in the brain[J]. Frontiers in Psychology, 2014, 5: 146. [51] ALVAREZ G A, CAVANAGH P. The capacity of visual short-term memory is set both by visual information load and by number of objects[J]. Psychological science, 2004, 15(2): 106-111. [52] HARRISON A, JOLICOEUR P, MAROIS R. “What” and “where” in the intraparietal sulcus: an fMRI study of object identity and location in visual short-term memory[J]. Cerebral Cortex, 2010, 20(10): 2478-2485. [53] SHEREMATA S L, BETTENCOURT K C, SOMERS D C. Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2010, 30(38): 12581-12588. [54] XU Y D, CHUN M M. Dissociable neural mechanisms supporting visual short-term memory for objects[J]. Nature, 2006, 440(7080): 91-95. [55] OTSUKA S , SAIKI J. Neural correlates of visual short-term memory for objects with material categories[J]. Heliyon, 2019, 5(12): e03032. [56] LI C L, KOVáCS G, TRAPP S. Visual short-term memory load modulates repetition related fMRI signal adaptation[J]. Biological Psychology, 2021, 166: 108199. [57] KOMATSU H, GODA N. Neural mechanisms of material perception: Quest on shitsukan[J]. Neuroscience, 2018, 392: 329-347. [58] ECK J, KAAS A L, MULDERS J L, et al. The effect of task instruction on haptic texture processing: the neural underpinning of roughness and spatial density perception[J]. Cerebral Cortex, 2016, 26(1): 384-401. [59] GALLIVAN J P, CANT J S, GOODALE M A, et al. Representation of object weight in human ventral visual cortex[J]. Current Biology, 2014, 24(16): 1866-1873. [60] NEWMAN S D, KLATZKY R L, LEDERMAN S J, et al. Imagining material versus geometric properties of objects: An fMRI study[J]. Cognitive Brain Research, 2005, 23(2/3): 235-246. [61] KIM Y, USUI N, MIYAZAKI A, et al. Cortical regions encoding hardness perception modulated by visual information identified by functional magnetic resonance imaging with multivoxel pattern analysis[J]. Frontiers in Systems Neuroscience, 2019, 13: 52. [62] XIAO B, BI W Y, JIA X D, et al. Can you see what you feel? Color and folding properties affect visual-tactile material discrimination of fabrics[J]. Journal of Vision, 2016, 16(3): 34. [63] WEISSER V, STILLA R, PELTIER S, et al. Short-term visual deprivation alters neural processing of tactile form[J]. Experimental Brain Research, 2005, 166(3): 572-582. [64] O CALLAGHAN G, O DOWD A, SIMõES-FRANKLIN C, et al. Tactile-to-visual cross-modal transfer of texture categorisation following training: An fMRI study[J]. Frontiers in Integrative Neuroscience, 2018, 12: 24. [65] ONO M, HIROSE N, MORI S J. Tactile information affects alternating visual percepts during binocular rivalry using naturalistic objects[J]. Cognitive Research: Principles and Implications, 2022, 7(1): 40. [66] LUNGHI C, MORRONE M C. Early interaction between vision and touch during binocular rivalry[J]. Multisensory Research, 2013, 26(3): 291-306. [67] ISAMI C, YAMAMOTO H, SUKIGARA S. Visio-haptic cross-modal recognition for fabrics[J]. Journal of Textile Engineering, 2020, 66(1): 1-6. [68] GUIDALI G, PISONI A, BOLOGNINI N, et al. Keeping order in the brain: the supramarginal gyrus and serial order in short-term memory[J]. Cortex, 2019, 119: 89-99. [69] MUNOZ-MONTOYA F, JUAN M C, MENDEZ-LOPEZ M, et al. Augmented reality based on SLAM to assess spatial short-term memory[J]. IEEE Access, 2018, 7: 2453-2466. [70] DEHGHAN NAYYERI M, BURGMER M, PFLEIDERER B. Impact of pressure as a tactile stimulus on working memory in healthy participants[J]. PLoS One, 2019, 14(3): e0213070. |
[1] | CHEN Xue, YU Lijing, ZHANG Zhaohua. Review of personal cold and heat regulating clothing [J]. Advanced Textile Technology, 2024, 32(9): 28-37. |
[2] | ZHAI Ruotong, SHI Tingting, SONG Haibo, LU Yehu, YIN Lanjun. tudy on the sleep comfort of quilts in a winter heating room environment [J]. Advanced Textile Technology, 2024, 32(9): 83-90. |
[3] | Zhang caiqian, Meng Shaoni, Li Junrong. The influence of air flow on the properties of cotton tight fabrics [J]. Advanced Textile Technology, 2024, 32(7): 74-79. |
[4] | WANG Xuhuia, JIANG Wenbina, WANG Jinfenga, b. Finite element analysis of mechanical properties of weft plain knitted fabrics [J]. Advanced Textile Technology, 2024, 32(6): 80-88. |
[5] | JIN Wenzhe, LÜ Wentao, GUO Qing, XU Yuzhen, YU Runze. Fabric image classification algorithm based on improved 3E-LDA [J]. Advanced Textile Technology, 2024, 32(6): 89-96. |
[6] | ZHOU Zi'ao, GAO Shiya, ZHANG Yongli, LI Yuan. Analysis of global silk trade's network characteristics [J]. Advanced Textile Technology, 2024, 32(5): 73-83. |
[7] | ZHANG Luyang, SONG Haibo, MENG Jing, SHI Tingting, LU Yehu. Dynamic thermal and moisture comfort of the bedding system in different conditions [J]. Advanced Textile Technology, 2024, 32(5): 97-104. |
[8] | LIU Chena, YANG Kailua, CHEN Mingxinga, b, WANG Xinyaa, b, ZHANG Weia, b. Research progress in the preparation and application of melt-blown nonwovens [J]. Advanced Textile Technology, 2024, 32(5): 116-129. |
[9] | LIU Xiaohan, WANG Yuxuan, XIE Wen, ZHANG Hongxia. Performance of antibacterial clothing fabric with the composite functions of thermal-moisture comfort [J]. Advanced Textile Technology, 2024, 32(4): 52-59. |
[10] | JIANG Xina, LIU Chengxiaa, b. A multi-direction visual bending test method of fabrics based on 3D scanning [J]. Advanced Textile Technology, 2024, 32(4): 60-67. |
[11] | TIAN Yuan, DU Zhaoqun, ZHENG Dongming, ZOU Haochen. Development of fabric style and thermal-moisture comprehensive evaluation system [J]. Advanced Textile Technology, 2024, 32(4): 68-75. |
[12] | WANG Jin, CHENG Hepeng, LI Shuai, LU He, CUI Yongzhi, QIAN Cui'e, YU Hechun. Influence of flow field state in fiber delivery tube on the opening and loosening of fiber tows [J]. Advanced Textile Technology, 2024, 32(3): 29-37. |
[13] | SHI Lang a, JIANG Rongfan b. Effect of coating layer number on dielectric properties and wave absorption properties of Ni powder/graphite matrix composites [J]. Advanced Textile Technology, 2024, 32(3): 38-44. |
[14] | GU Shanqia, b, HU Lianxina, b, WANG Zefenga, b, CHEN Xua, LOU Jiongnana, b, LIU Qiloga, b, ZHANG Gegea, b. Research progress of virtual clothing under the background of metaverse [J]. Advanced Textile Technology, 2024, 32(3): 129-140. |
[15] | CHEN Bo, ZHANG Shengyu, YANG Xinglin, ZHANG Junmiao. Stiffness prediction of 3D five-directional circular braided composites with radial yarns based on microstructure [J]. Advanced Textile Technology, 2024, 32(2): 83-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||