[1] ZHANG H H, ZHAO Y, JING J F, et al. Yarn evenness measurement based on sub-pixel edge detection[J]. Journal of Textile Research, 2020, 41(5): 45-49.
[2] LI Z S, ZHONG P, TANG X, et al. A New method to evaluate yarn appearance qualities based on machine vision and image processing[J]. IEEE Access, 2020, 8: 30928-30937.
[3] PEREIRA F, MACEDO A, PINTO L, et al. Intelligent computer vision system for analysis and characterization of yarn quality[J]. Electronics, 2023, 12(1): 236.
[4] PINTO J, MONTEIRO J, VASCONCELOS R, et al. A new system for direct measurement of yarn mass with 1mm accuracy[C] //2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT'02. IEEE, 2002, 2: 1158-1163.
[5] CARVALHO V, PINTO J, MONTEIRO J, et al. Yarn parameterization based on mass analysis[J]. Sensors and Actuators A: Physical, 2004, 115(2/3): 540-548.
[6] CARVALHO V, PINTO J, MONTEIRO J, et al. On-line measurement of yarn evenness[C]//2003 IEEE International Symposium on Industrial Electronics (Cat. No.03TH8692). IEEE, 2003, 2: 1059-1064.
[7] PINTO J, CARVALHO V, MONTEIRO J, et al. Yarn-mass measurement with 1-mm-length samples[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1177-1183.
[8] MONTEIRO J, COUTO C. Pulse frequency calculation and estimation in yarn evenness analysis[C]//Proceedings of IECON'95-21st Annual Conference on IEEE Industrial Electronics. IEEE, 1995, 2: 985-989.
[9] CARVALHO V, MONTEIRO J, VASCONCELOS R, et al. Yarn mass analysis with 1 mm capacitive sensors[C]//2004 IEEE International Symposium on Industrial Electronics. IEEE, 2004, 1: 633-638.
[10] LIU S G, QU P G. Inspection of yarn nep based on wavelet analysis[C]//2007 8th International Conference on Electronic Measurement and Instruments. IEEE, 2007: 3-817-3-820.
[11] SULE I. Characterization of twist of fancy yarns using wavelet analysis of sensor signal[J]. Textile Research Journal, 2020, 90(23/24): 2592-2612.
[12] 孙通, 杨芸, 杨耀, 等. 基于时频特征学习的分步式纱疵检测方法[J].东华大学学报(自然科学版), 2022, 48(5):25-34.
SUN Tong, YANG Yun, YANG Yao, et al. A stepwise method of yarn defect detection based on time-frequency feature learning[J]. Journal of Donghua University (Natural Science), 2022, 48(5):25-34.
[13] 杨芸, 孙通, 梁振宇, 等. 基于异构集成学习的棉纱纱疵定量分析方法[J]. 纺织学报, 2023, 44(5): 93-101.
YANG Yun, SUN Tong, LIANG Zhenyu, et al. Quantitative analysis method of cotton yarn defects based on heterogeneous ensemble learning[J]. Journal of Textile Research, 2023, 44(5): 93-101.
[14] WANG S, YU J, LI Z, et al. Semisupervised classification with sequence gaussian mixture variational autoencoder[J]. IEEE Transactions on Industrial Electronics, 2023: 1-9.
[15] YAN G, YAO E T, HUANG S C, et al. The research on high sensitivity and anti-saturation of capacitance sensors for measuring yarn evenness[C]//2016 10th International Conference on Sensing Technology (ICST). IEEE, 2016: 1-6.
[16] ISHTIAQUE S M, DAS A. A new approach of prediction of yarn diameter[J]. Fibers and Polymers, 2013, 14(5): 838-843.
[17] GURKAN K. Capacitive measurement circuit design for yarn unevenness analysis: mathematical approach and realization [J]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020, 24(1): 5-11.
[18] 周彬, 王慧玲, 周红涛, 等.同步测量线密度的纱线条干测试系统研究[J].棉纺织技术,2021,49(8):26-29.
ZHOU Bin, WANG Huiling, ZHOU Hongtao, et al. Study on yarn evenness test system for synchronous test linear density[J].Cotton Textile Technology, 2021,49(8):26-29.
[19] QIN W G, HUANG Q L, YANG G Y, Application of on-line yarn evenness measurement through CCD image sensors[C]//2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010, 6: V6-112-V6-115.
[20] ROY S, SENGUPTA A, SENGUPTA S. Performance study of optical sensor for parameterization of staple yarn[J]. Measurement, 2017, 109: 394-407.
[21] ZHOU B, WANG H L, WANG K, et al. Nondestructive test technology research for yarn linear density unevenness[J]. Autex Research Journal, 2021, 23(1): 132-141.
[22] QIN W G. On-line yarn evenness detection using CCD image sensor[C]//2011 Chinese Control and Decision Conference (CCDC). IEEE, 2011: 1787-1790.
[23] LI G Z, AKANKWASA N T, ZHAO Q, et al. A novel system for yarn cross-section analysis based on dual orthogonal CCD sensors[J]. Journal of Natural Fibers, 2019, 16(1): 114-125.
[24] CARVALHO V H, CARDOSO P J, VASCONCELOS R M, et al. Optical yarn hairiness measurement system[C]//2007 5th IEEE International Conference on Industrial Informatics. IEEE, 2007, 1: 359-364.
[25] CARVALHO V H, BELSLEY M, VASCONCELOS R M, et al. A comparison of mass parameters determination using capacitive and optical sensors[J]. Sensors and Actuators A: Physical, 2011, 167(2): 327-331.
[26] CARVALHO V H, CARDOSO P J, BELSLEY M, et al. Yarn diameter measurements using coherent optical signal processing[J]. IEEE Sensors Journal, 2008, 8(11): 1785-1793.
[27] YADAV V K, ISHTIAQUE S M, JOSHI S D, et al. Diametric unevenness and fault classification of yarn using newly developed diametric fault system[J]. Fibers and Polymers, 2017, 18(10): 2018-2033.
[28] YAN N, ZHU L L, YANG H M, et al. Online yarn breakage detection: A reflection-based anomaly detection method[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
[29] CHAITAVON K, SUMRIDDETCHKAJORN S, KAMTONGDEE C, et al. Optical sensing system for real-time physical quality evaluation of hand reeled silk yarn[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 1-8.
[30] ALIKHONOV E J. Determination of linear density of cotton ribbons by photoelectric method[J]. Science and Education, 2021, 2(11): 461-467.
[31] ABDOLKARIM HOSSEINI RAVANDI S, ALI ABUZADE R. Objective evaluation of fibrous thread using optical sensors[J]. International Journal of Sensors Wireless Communications and Control, 2013, 2(3): 168-172.
[32] WANG X, LIAO S Q, HU L Z, et al. A simple method for measuring the monofilament diameter of continuous filament yarn with high bending stiffness via synthetic laser imaging[J]. Science and Engineering of Composite Materials, 2022, 29(1): 312-321.
[33] GUO M R, GAO W D, WANG J A. Online measurement of sizing yarn hairiness based on computer vision[J]. Fibers and Polymers, 2023, 24(4): 1539-1552.
[34] SULE I. Inspection and feature specification of the fancy yarns using diffraction limited incoherent imaging[J]. Measurement, 2020, 163: 107924.
[35] WANG L, LU Y C, PAN R R, et al. Evaluation of yarn appearance on a blackboard based on image processing[J]. Textile Research Journal, 2021, 91(19/20): 2263-2271.
[36] WU C L, HU G, QIU X M, et al. Design and implementation of new high-speed yarn hairiness instrument[J]. Cotton Textile Technology, 2022, 50(611): 44.
[37] KHADDAM H S, AHMAD G G. A method to evaluate the diameter of carded cotton yarn using image processing and artificial neural networks[J]. The Journal of The Textile Institute, 2022, 113(8): 1648-1657.
[38] ABDELKADER M. MATLAB algorithms for diameter measurements of textile yarns and fibers through image processing techniques[J]. Materials, 2022, 15(4): 1299.
[39] HALEEM N, BUSTREO M, DEL BUE A. A computer vision based online quality control system for textile yarns[J]. Computers in Industry, 2021, 133: 103550.
[40] CHEN Y M, YU T, WAN K, et al. Real-time detection of the broken thread of textile products[C]//2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). IEEE, 2021: 988-991.
[41] IDZIK M, RYBICKI T. Real-time yarn breakage detection in the warping machine[J]. IEEE Access, 2023, 11:47501-47509.
[42] WANG X, HOU R M, GAO X Y, et al. Research on yarn diameter and unevenness based on an adaptive median filter denoising algorithm[J]. Fibres and Textiles in Eastern Europe, 2020, 28(1): 36-41.
[43] ZHANG H H, CHENG S K, ZHAO Y, et al. Measurement of yarn apparent evenness based on modified Canny edge detection[J]. The Journal of The Textile Institute, 2023: 1-7.
[44] ZHANG B W, SONG J X, WANG Y H, et al. Yarn strength CV prediction using principal component analysis and automatic relevance determination on Bayesian platform[J]. Journal of The Institution of Engineers (India): Series E, 2021: 1-14.
[45] XU C Q, WANG J L, TAO J, et al. A knowledge augmented deep learning method for vision-based yarn contour detection[J]. Journal of Manufacturing Systems, 2022, 63: 317-328.
[46] JIANG H, SONG J X, ZHANG B W, et al. Yarn unevenness prediction using generalized regression neural network under various optimization algorithms[J]. Journal of Engineered Fibers and Fabrics, 2022, 17: 15589250221093019.
[47] JIANG H, SONG J X, ZHANG B W, et al. Prediction of yarn unevenness based on BMNN[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 15589250211037978.
[48] ZHANG B W, XU L, WANG Y H. Yarn unevenness prediction using generalized regression neural network[J]. Journal of Internet Technology, 2023, 24(3): 775-781.
[49] MUTHUSAMY R S, SUMATHI B. Prediction of yarn quality by deep belief neural network. [J] Journal of Hunan University (Natural Science), 2022, 49(1).
[50] ZHANG H H, ZHU H C, YAN K, et al. Yarn apparent evenness detection based on L0 norm smoothing and the expectation maximization method[J]. Textile Research Journal, 2023, 93(1/2): 422-433.
[51] 陶静, 汪俊亮, 徐楚桥, 等. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(4): 70-77.
TAO Jing, WANG Junliang, XU Chuqiao, et al. Feature extraction method for ring-spun-yarn evenness online detection based on visual calibration[J]. Journal of Textile Research, 2023, 44(4): 70-77.
[52] LIYAKAT K K S, WARHADE N S, POL R S, et al. Yarn quality detection for textile industries using image processing[J]. Journal of Algebraic Statistics, 2022, 13(3): 3465-3472.
[53] MA Y J, ZUO X H, WANG L, et al. Three-dimensional measurement of yarn evenness using mirrored images[J]. Measurement, 2022, 191: 110834.
[54] CALDAS P, SOUSA F, PEREIRA F. et al. Automatic system for yarn quality analysis by image processing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(11): 565.
|