[1]CHANDRA Y, TEWARI R P, JAIN A. Experimental studies on acrylic dielectric elastomers as actuator for artificial skeletal muscle application[J]. International Journal of Biomedical Engineering and Technology, 2021, 37(1): 65-82.
[2]YANG R, ZHAO Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: An approach to complex and programmable shape changes[J]. Angewandte Chemie (International Ed in English), 2017, 129(45): 14390-14394.
[3]YANG Y, LI D, SUN Y, et al. Muscle-inspired soft robots based on bilateral dielectric elastomer actuators[J]. Microsystems & Nanoengineering, 2023, 9(1): 124.
[4]NOVELLI G L, VARGAS G G, ANDRADE R M. Dielectric elastomer actuators as artificial muscles for wearable robots[J]. Journal of Intelligent Material Systems and Structures, 2023, 34(9): 1007-1025.
[5]俞红锂, 刘茜. 介电弹性体驱动器在柔性机器人中的研究进展[J]. 中国塑料, 2023, 37(10): 144-152.
YU Hongli, LIU Qian. Research progress in dielectric elastomer actuators for soft robots[J]. China Plastics, 2023, 37(10): 144-152.
[6]WANG W, QI X, YANG F, et al. Two-way shape memory ethylene-vinyl acetate@polypyrrole composites for electro-driven actuators[J]. Materials Letters, 2023, 350: 134962.
[7]LANG C, LLOYD E C, MATUSZEWSKI K E, et al. Nanostructured block copolymer muscles[J]. Nature Nanotechnology, 2022, 17(7): 752-758.
[8]CUI Y, LI D, GONG C, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents[J]. ACS Nano, 2021, 15(8): 13712-13720.
[9]QI X, YANG W, YU L, et al. Design of ethylene-vinyl acetate copolymer fiber with two-way shape memory effect[J]. Polymers, 2019, 11(10): 1599.
[10]ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23649-23658.
[11]ZHANG S, LIU H, YANG S, et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10922-10932.
[12]周长年, 张士佳, 吴鹏飞, 等. 含银功能纤维及织物应用进展[J]. 高科技纤维与应用, 2023, 48(5): 65-71.
ZHOU Changnian, ZHANG Shijia, WU Pengfei, et al. Progress in the application of silver-containing functional fibers and fabrics[J]. Hi-Tech Fiber and Application, 2023, 48(5): 65-71.
[13]许黛芳, 王花娥, 何佩斯, 等. 石墨烯改性涤纶并股纱线的力学、导电性及传感性能研究[J]. 北京服装学院学报(自然科学版), 2023, 43(1): 73-79.
XU Daifang, WANG Huae, HE Peisi, et al. Mechanical and conductive properties and sensing performance of graphene-modified polyester yarn[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2023, 43(1): 73-79.
[14]IGLIO R, MARIANI S, ROBBIANO V, et al. Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13877-13885.
[15]QI H, LIU J, DENG Y, et al. Cellulose fibres with carbon nanotube networks for water sensing[J]. Journal of Materials Chemistry A, 2014, 2(15): 5541-5547.
[16]WANG S L, WANG W J, CHI Z Y, et al. Development of electric- and near-infrared light-driven CNTs/EVA shape memory composite actuators with strain sensing and encrypted information transmitting functionalities[J]. Sensors and Actuators A: Physical, 2023, 360: 114547.
[17]罗焱, 李能, 李旭, 等. 聚合物中Case II扩散与材料溶胀变形的耦合行为分析[J]. 固体力学学报, 2024. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.013.
LUO Yan, LI Neng, LI Xu, et al. Modeling and analysis on case Ⅱ diffusion coupled with swelling deformation behavior in polymers[J]. Chinese Journal of Solid Mechanics, 2024. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.013.
[18]齐晓明. 双向形状记忆EVA基复合纤维的构筑及其多重刺激响应性能研究[D]. 杭州: 浙江理工大学, 2023: 32-33.
QI Xiaoming. Construction of Bi-Directional Shape Memory EVA-Based Composite Fiber and Its Multi-Stimulus Response Performance[D]. Hangzhou: Zhejiang Sci-Tech University, 2023: 32-33.
[19]HU L, PASTA M, LA MANTIA F, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Letters, 2010, 10(2): 708-714.
[20]QI X, WANG W, DAI H, et al. Multifunctional two-way shape memory RGO/ethylene-vinyl acetate composite yarns for electro-driven actuators and high sensitivity strain sensors[J]. Composites Part A: Applied Science and Manufacturing, 2023, 169: 107521.
[21]OKUGAWA A, SAKAINO M, YUGUCHI Y, et al. Relaxation phenomenon and swelling behavior of regenerated cellulose fibers affected by water[J]. Carbohydrate Polymers, 2020, 231: 115663.
[22]ZHAI W, WANG C, WANG S, et al. Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring[J]. Journal of Materials Chemistry A, 2021, 9(11): 7238-7247.
[23]ZHOU J, MULLE M, ZHANG Y, et al. High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators[J]. Journal of Materials Chemistry C, 2016, 4(6): 1238-1249.
LIANG Y, ZHANG H, LIN Z, et al. High specific surface area Pd/Pt electrode-based ionic polymer–metal composite for high-performance biomimetic actuation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8): 2645-2652.
|