[1]吴笛, 张爱萍. 基于协整模型兵团棉花价格影响因素分析[J]. 合作经济与科技, 2023(21): 67-69.
WU Di, ZHANG Aiping. Analysis on influencing factors of cotton price in corps based on co-integration model[J]. Co-Operative Economy & Science, 2023(21): 67-69.
[2]于红彬, 夏彬, 王泽武. 基于图像处理的棉花表面杂质自动识别[J]. 上海纺织科技, 2020, 48(6): 17-19.
YU Hongbin, XIA Bin, WANG Zewu. Automatic identification of cotton surface impurities based on image processing[J]. Shanghai Textile Science & Technology, 2020, 48(6): 17-19, 64.
[3]张志强, 张太红, 刁琦, 等. 一种改进GA神经网络棉花杂质检测算法[J]. 电子设计工程, 2017, 25(1): 22-26.
ZHANG Zhiqiang, ZHANG Taihong, DIAO Qi, et al. A cotton impurity detection algorithm based on improved genetic algorithm[J]. Electronic Design Engineering, 2017, 25(1): 22-26.
[4]WANG H P, LI H. Classification recognition of impurities in seed cotton based on local binary pattern and gray level co-occurrence matrix[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 236-241.
[5]田昊, 王维新, 毕新胜, 等. 基于图像处理的机采棉杂质提取算法[J]. 江苏农业科学, 2014, 42(1): 366-368.
TIAN Hao, WANG Weixin, BI Xinsheng, et al. Impurity extraction algorithm of machine-picked cotton based on image processing[J]. Jiangsu Agricultural Sciences, 2014, 42(1): 366-368.
[6]郭俊先, 饶秀勤, 成芳, 等. 近红外光谱用于皮棉杂质含量预测和分类的研究[J]. 光谱学与光谱分析, 2010, 30(3): 649-653.
GUO Junxian, RAO Xiuqin, CHENG Fang, et al. Research on the trash content measurement and classification of ginned cotton by using NIR spectroscopy technique[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 649-653.
[7]HAN J, GUO J, ZHANG Z, et al. The rapid detection of trash content in seed cotton using near-infrared spectroscopy combined with characteristic wavelength selection[J]. Agriculture, 2023, 13(10): 1928.
[8]常金强, 张若宇, 庞宇杰, 等. 高光谱成像的机采籽棉杂质分类检测[J]. 光谱学与光谱分析, 2021, 41(11): 3552-3558.
CHANG Jinqiang, ZHANG Ruoyu, PANG Yujie, et al. Classification of impurities in machine-harvested seed cotton using hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3552-3558.
[9]郭俊先, 李雪莲, 黄华, 等. 基于可见短波近红外高光谱图像的梳棉杂质关键波长的优选[J]. 新疆农业科学, 2016, 53(2): 352-358.
GUO Junxian, LI Xuelian, HUANG Hua, et al. Wavelengths selection of trashes detection in combed cotton using Hyper-spectral imaging at visible and short-wave near infrared wavelength range[J]. Xinjiang Agricultural Sciences, 2016, 53(2): 352-358.
[10]ZHANG C, LI T, LI J. Detection of impurity rate of machine-picked cotton based on improved canny operator[J]. Electronics, 2022, 11(7): 974.
[11]周瑞清. 基于光谱成像技术的大麦病害早期检测及其可视化研究[D]. 杭州: 浙江大学, 2020: 41-45.
ZHOU Ruiqing. Study on Early Detection and Visualization of Barley Diseases Based on Spectral Imaging Technology[D]. Hangzhou: Zhejiang University, 2020: 41-45.
[12]陈小荣. 基于近红外光谱技术的涌泉蜜桔品质检测及研究[D]. 温州: 温州大学, 2022: 15-18.
CHEN Xiaorong. Quality Detection and Research of Yongquantangerine Based on Near Infrared Spectroscopy Technology[D]. Wenzhou: Wenzhou University, 2022: 15-18.
[13]蒲姗姗, 郑恩让, 陈蓓. 基于1D-CNN的近红外光谱分类算法研究[J]. 光谱学与光谱分析, 2023, 43(8): 2446-2451.
PU Shanshan, ZHENG Enrang, CHEN Bei. Research on A classification algorithm of near-infrared spectroscopy based on 1D-CNN[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2446-2451.
[14]邵小宇, 江龙发, 章明, 等. 近红外光谱技术在油茶籽粕检测中的应用[J]. 红外, 2023, 44(9): 38-45.
SHAO Xiaoyu, JIANG Longfa, ZHANG Ming, et al. Application of near-infrared spectroscopy in the detection of oil-tea camellia seed meal[J]. Infrared, 2023, 44(9): 38-45.
[15]吴新生, 谢益民. 植物纤维的主要成分在近红外光谱吸收上的差异[J]. 计算机与应用化学, 2011, 28(3): 279-282.
WU Xinsheng, XIE Yimin. Difference of near-infrared absorption of main components in plant fibers[J]. Computers and Applied Chemistry, 2011, 28(3): 279-282.
[16]王文博, 陈秀芝. 多指标综合评价中主成分分析和因子分析方法的比较[J]. 统计与信息论坛, 2006,21(5): 19-22.
WANG Wenbo, CHEN Xiuzhi. Comparison of principal component analysis with factor analysis in comprehensive multi-indicators scoring[J]. Statistics & Information Forum, 2006, 21(5): 19-22.
|