[1] OU Y, WU L, YI X, et al. Understanding Mode I interlaminar toughening of unidirectional CFRP laminates interleaved with aligned ultrathin CNT fiber veils: Thickness and orientation effects[J]. Composites Part B: Engineering, 2023, 254: 110578.
[2] 赵庆志, 阳泽濠, 薛怿, 等. 低面密度 PA66 纤维网纱层间增韧碳纤维/环氧复合材料的性能[J].复合材料学报, 2024, 42: 1-9.
ZHAO Qingzhi, YANG Zehao, XUE Yi, et al. Performance of interlayer toughened carbon fiber/epoxy composites of low areal density PA66 fiber veil[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-9.
[3] 赵红晨, 欧云福, 吴龙强, 等. 碳纳米管喷涂层增韧玻璃纤维/环氧树脂基复合材料的制备与增韧机制[J].复合材料学报, 2024, 41: 1-11.
ZHAO Hongchen, OU Yunfu, WU Longqiang, et al. Preparation and Toughening Mechanism of Glass Fiber/Epoxy Composites Toughened by Carbon Nanotube Sprayed Layers[J]. Acta Materiae Compositae Sinica, 2024, 41: 1-11.
[4] 代少伟, 周玉敬, 李伟东, 等. 氧化石墨烯-碳纳米管复合膜层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2023, 40(7): 3862-3873.
DAI Shaowei, ZHOU Yujing, LI Weidong, et al. Interlaminar toughening of carbon fiber/epoxy composites with graphene oxide-carbon nanotube composite film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3862-3873.
[5] 谷国华, 张成林, 董抒华, 等. PEEK层间增韧碳纤维环氧树脂基复合材料的性能研究[J]. Plastics Science & Technology/Suliao Ke-Ji, 2022, 50(1): 1-3.
GU Guohua, ZHANG Chenglin, DONG Shuhua, et al. Study on properties of PEEK interlayer toughened carbon fiber epoxy resin matrix composites[J]. Plastics Science and Technology, 2022, 50(1) :1-3.
[6] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2): 273-285.
DONG Huimin, YI Xiaosu, AN Xuefeng, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273-285.
[7] QUAN D, ALDERLIESTEN R, DRANSFELD C, et al. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils[J]. Composite Structures, 2020, 252: 112699.
[8] GUPTA M, AHMAD KHAN M, BUTOLA R, et al. Advances in applications of Non-Destructive Testing (NDT): A review[J]. Advances in Materials and Processing Technologies, 2022, 8(2): 2286-2307.
[9] 卢少微, 蒋孝伟, 王晓强, 等. 碳基纳米传感器在复合材料制造过程及服役过程监测中的应用[J].航空材料学报, 2021, 41(3): 36-51.
LU Shaowei, JIANG Xiaowei, WANG Xiaoqiang, et al. Application of carbon nanosensors in monitoring the manufacturing and service processes of composite materials[J]. Journal of Aeronautical Materials, 2021, 41(3): 36-51.
[10] ISLAM M H, AFROJ S, UDDIN M A, et al. Graphene and CNT-based smart fiber-reinforced composites: A review[J]. Advanced Functional Materials, 2022, 32(40): 2205723.
[11] GÜEMES A, FERNANDEZ L A, POZO A R, et al. Structural health monitoring for advanced composite structures: A review[J]. Journal of Composites Science, 2020, 4(1): 13.
[12] WAN Y, YANG H, TIAN Z, et al. Mode I interlaminar crack length prediction by the resistance signal of the integrated MWCNT sensor in WGF/epoxy composites during DCB test[J]. Journal of Materials Research and Technology, 2020, 9(3): 5922-5933.
[13] PARK J, LEE J R. Strain measurements of an aircraft wing using embedded CNT fiber sensor and wireless SHM sensor node[J]. Functional Composites and Structures, 2022, 4(3): 035004.
[14] AL-BAHRANI M, CREE A. In situ detection of oil leakage by new self-sensing nanocomposite sensor containing MWCNTs[J]. Applied Nanoscience, 2021, 11(9): 2433-2445.
[15] RAO D S, REDDY P R, VENKATESH S. Determination of mode-I fracture toughness of epoxy-glass fibre composite laminate[J]. Procedia Engineering, 2017, 173: 1678-1683.
[16] KILIÇOĞLU M, BAT E, GÜNDÜZ G, et al. Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms[J]. Composites Part A: Applied Science and Manufacturing, 2022, 158: 106982.
[17] OU Y, GONZÁLEZ C, VILATELA J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105477.
|