"[1]王媛,雷荣洁. 纺织工业数字化转型中的智能制造技术应用[J].印染助剂,2024,41(8):69-74.
WANG Y, LEI R J. Application of intelligent manufacturing technology in the digital transformation of textile industry[J]. Textile Auxiliaries, 2024,41(8):69-74.
[2]徐开心, 戴宁, 汝欣, 等. 基于概率分布和XGBoost决策算法的织机异常数据处理方法[J/OL]. 计算机集成制造系统, 1-16[2023-08-02]. https://kns.cnki.net/kcms/detail/11.5946.tp.20230802.1435.004.html.
XU K X, DAI N, RU X, et al. Loom abnormal data processing method based on probability distribution and XGBoost decision algorithm[J/OL]. Computer Integrated Manufacturing Systems, 1-16[2023-08-02]. https://kns.cnki.net/kcms/detail/11.5946.tp.20230802.1435.004.html.
[3]柯子桓,罗楚楠,黎少凡.基于循环神经网络的配网电压异常数据检测方法[J].电子设计工程,2024,32(1):106-110.
KE Z H, LUO C N, LI S F. Detection method of abnormal voltage data in distribution network based on recurrent neural network[J]. Electronic Design Engineering, 2024, 32(1): 106-110.
[4]张倩. 车联网异常检测及数据恢复技术研究[D]. 西安: 西安电子科技大学, 2018.
ZHANG Q. Research on fault detection and data repairing for Internet of Vehicles[D]. Xi'an: Xidian University, 2018.
[5]CALÌ M, BAIAMONTE G, LAUDANI G, et al. An accurate roughness prediction in milling processes through analytical evaluation and KNN regression approach[J]. The International Journal of Advanced Manufacturing Technology, 2024,10:1-18.
[6]李鹏翔,刘佳楠.基于ARIMA模型和K-Means的组合异常检测方法[J].陕西煤炭,2021,40(S2):90-94.
LI P X, LIU J N. Combined anomaly detection method based on ARIMA model and K-Means model[J]. Shaanxi Coal,2021,40(S2):90-94.
[7]龚晓菲. 工业互联网平台数据的异常检测研究[D]. 北京: 北京邮电大学, 2019.
GONG X F. Research on abnormal detection of data of industrial Internet platform[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
[8]胡鑫.基于时间序列ARIMA模型的边坡强降雨稳定性预测分析[J].珠江水运,2024,(4):74-76.
HU X. Prediction and analysis of slope stability under heavy rainfall stability based on time series ARIMA model[J]. Pearl River Water Transport,2024,(4):74-76.
[9]耿苏杰, 王秀利. 基于模糊贝叶斯网络的电力设备故障诊断和状态评估[J]. 计算机集成制造系统, 2021, 27(1): 63-71.
GENG S J, WANG X L. Fault diagnosis and state estimation of power equipment based on fuzzy Bayesian network[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 63-71.
[10]李翠, 黄侃, 李霞. 一种修复交通流异常数据的改进KNN算法[J]. 公路与汽运, 2022, (4): 39-43.
LI C, HUANG K, LI X. An improved KNN algorithm for repairing abnormal data of traffic flow[J]. Highways & Automotive Applications, 2022, (4): 39-43." |