Online:
2025-04-16
Published:
2025-04-16
CLC Number:
陈岱滨 , MAKAME Hafsa Machano, 叶翔宇, 朱斐超 , 方艳. 导电细菌纤维素的制备方法及应用研究进展 [J]. 现代纺织技术.
"[1] 尹云雷, 郭成, 杨红英, 等. 电子织物在智能可穿戴领域的研究进展[J]. 现代纺织技术, 2023, 31(1): 1-12. YIN Y L, GUO C, YANG H Y, et al. Research progress of electronic fabrics in the intelligent wearable field[J]. Advanced Textile Technology, 2023, 31(1): 1-12. [2] 梁嘉文, 李婷婷, 严占林, 等. 可穿戴设备的能源供给研究进展[J]. 现代纺织技术, 2023, 31(1): 28-39. LIANG J W, LI T T, YAN Z L, et al. Research progress on energy supply of wearable devices[J]. Advanced Textile Technology, 2023, 31(1): 28-39. [3] WANG J, ZHU X, XIONG P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2022, 10(2): 960-968. [4] MASHKOUR M, RAHIMNEJAD M, MASHKOUR M, et al. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly[J]. Applied Energy, 2021, 282: 116150. [5] 刘凡,赵晓明,郑煜昊,等.导电聚合物/磁性粒子复合吸波材料的研究进展[J].现代纺织技术,2021,29(6):7-18. LIU F, ZHAO X M, ZHENG Y H, et al. Research progress of the composite wave-absorbing material of conductive polymer/magnetic particle[J]. Advanced Textile Technology, 2021, 29(6): 7-18. [6] 陈钦钦, 徐兆梅, 马廷方, 等. 细菌纤维素纳米纤维膜及纤维的制备与性能[J]. 现代纺织技术, 2023, 31(5): 66-75. CHEN Q Q, XU Z M, MA T F, et al. Preparation and properties of bacterial cellulose nanofiber membranes and fibers[J]. Advanced Textile Technology, 2023, 31(5): 66-75. [7] ZHONG C. Industrial-scale production and applications of bacterial cellulose[J]. Frontiers Bioengineering and Biotechnology, 2020, 8: 605374. [8] SIRICHAIBHINYO T, SUPCHOCKSOONTHORN P, PAOPRASERT P, et al. The electrical conductivity of a bacterial cellulose and polyaniline composite significantly improved by activated carbon: A nano-based platform for electrodes[J]. ChemEngineering, 2024, 8(5): 87. [9] WIJEWARDANE S. Potential applicability of CNT and CNT/composites to implement ASEC concept: A review article [J]. Solar Energy, 2009, 83(8): 1379–1389. [10] DEYAA A F, DÖRLING B, ZAPATA-ARTEAGA O, et al. Farming thermoelectric paper[J]. Energy & Environmental Science, 2019, 12(2): 716-726. [11] HADI H, KOKABI M, MOUSAVI S M. Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor[J]. Carbohydrate Polymers, 2018, 201: 228-235. [12] LI W, WU Q, ZHAO X, et al. Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils[J]. Carbohydrate Polymers, 2014, 113: 403-410. [13] WANG J, SONG Y, CUI F, et al. Preparation and characterization of nanocellulose fiber (CNF) by biological enzymatic method[J]. Journal of Thermoplastic Composite Materials, 2024, 37(3): 1223-1241. [14] CAI R, CHEN Y, HU J, et al. A self-supported sodium alginate composite hydrogel membrane and its performance in filtering heavy metal ions[J]. Carbohydrate Polymers, 2023, 300: 120278. [15] PINTO A M, GONÇALVES I C, MAGALHÃES F D. Graphene-based materials biocompatibility: A review[J]. Colloids and Surfaces B: Biointerfaces, 2013, 111: 188-202. [16] PRODYUT D, PRATTO B, GONÇALVES CRUZ A J, et al. Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation[J]. Journal of Cleaner Production, 2019, 238: 117859. [17] LUO H, DONG J, XU X, et al. Exploring excellent dispersion of graphene nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 290-297. [18] YANG C, WANG F, YOU D, et al. In-situ chemical state transition of Ni nano-metal catalytic site promotes the reaction kinetics of lithium-sulfur battery[J]. Chemical Engineering Journal, 2024, 496: 153812. [19] PINTO R J B, NEVES M C, NETO C P, et al. Growth and chemical stability of copper nanostructures on cellulosic fibers[J]. European Journal of Inorganic Chemistry, 2012, 2012(31): 5043-5049. [20] PINTO R J B, MARQUES P A A P, NETO C P, et al. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers[J]. Acta Biomaterialia, 2009, 5(6): 2279-2289. [21] KIM S S, JEON J H, KIM H I, et al. High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-oxidized bacterial cellulose[J]. Advanced Functional Materials, 2015, 25(23): 3560-3570. [22] SHI Z, ZANG S, JIANG F, et al. In situ nano-assembly of bacterial cellulose-polyaniline composites[J]. RSC Advances, 2012, 2(3): 1040-1046. [23]WANG H, BIAN L, ZHOU P, et al. Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(3): 578-584. [24] LI S, HUANG D, YANG J, et al. Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices[J]. Nano Energy, 2014, 9: 309-317. [25] YOON S H, JIN H J, KOOK M C, et al. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes[J]. Biomacromolecules, 2006, 7(4): 1280-1284. [26] VIDAKIS N, PETOUSIS M, MICHAILIDIS N, et al. Multi-functional 3D-printed vat photopolymerization biomedical-grade resin reinforced with binary nano inclusions: the effect of cellulose nanofibers and antimicrobial nanoparticle agents[J]. Polymers, 2022, 14(9): 1903. [27] KIANGKITIWAN N, SRIKULKIT K. Preparation and properties of bacterial cellulose/graphene oxide composite films using dyeing method[J]. Polymer Engineering & Science, 2021, 61(6): 1854-1863. [28] WASIM M, KHAN M R, MUSHTAQ M, et al. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics[J]. Coatings, 2020, 10(4): 364. [29] CHEN L F, HUANG Z H, LIANG H W, et al. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density[J]. Advanced materials, 2013, 25(34): 4746-4752. [30] ZHAO Y, LIU Y, DU J, et al. Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications [J]. Applied Surface Science, 2019, 487: 442-451. [31] GWIAZDECKI K, JUNKES E, MEIER M M, et al. An easy synthesis of polyaniline through bacterial nanocellulose membranes obtained from kombucha tea fermentation[J]. Macromolecular Symposia, 2024, 413(6): 2400069. [32] WANG H, ZHU E, YANG J, et al. Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes[J]. The journal of physical chemistry, C. Nanomaterials and interfaces, 2012, 116(24): 13013–13019. [33] KYRYCHENKO A, KARPUSHINA G V, SVECHKAREV D, et al. Fluorescence probing of thiol-functionalized gold nanoparticles: is alkylthiol coating of a nanoparticle as hydrophobic as expected?[J]. The Journal of Physical Chemistry C, 2012, 116(39): 21059-21068. [34] FARIA-TISCHER P C S, COSTA C A R, TOZETTI I, et al. Structure and effects of gold nanoparticles in bacterial cellulose–polyaniline conductive membranes[J]. RSC Advances, 2016, 6(12): 9571-9580. [35] WU Y, WANG F, WU Y, et al. Advanced ionic actuators with high-performance and high-reproducibility based on free-standing bacterial cellulose-reinforced poly(diallyldimethylammonium chloride) membranes and PEDOT/PSS electrodes[J]. Cellulose, 2023, 30(12): 7825-7837. [36] KHAN S, UL-ISLAM M, ULLAH M W, et al. Synthesis and characterization of a novel bacterial cellulose–poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite for use in biomedical applications[J]. Cellulose, 2015, 22(4): 2141-2148. [37] LIANG Q, ZHANG D, WU Y, et al. Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21319-21329. [38] LIANG Q, WAN J, JI P, et al. Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with ""reinforced cement-sand"" structure for self-stretchable solid supercapacitor[J]. Chemical Engineering Journal, 2022, 427: 131904. [39] TEBYETEKERWA M, WANG X, MARRIAM I, et al. Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications[J]. Materials Letters, 2017, 209: 400-403. [40] WU J, DU Z, XIONG P, et al. Fabrication of flexible polyindole/carbon nanotube/bacterial cellulose nanofiber nonwoven electrode doped by D-tartaric acid with high electrochemical performance[J]. Cellulose, 2020, 27(11): 6353-6366. [41] YANG W, QU L, ZHENG R, et al. Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids[J]. Chemistry of Materials, 2011, 23(11): 2760-2765. [42] CHEN Y, PANG L, LI Y, et al. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105960. [43] HUANG H, SHAO R, WANG C, et al. Flexible, ultralight, ultrathin, and highly sensitive pressure sensors based on bacterial cellulose and silver nanowires[J]. Journal of Materials Science, 2022, 57(44): 20987-20998. [44] LAI F, YONG D, NING X, et al. Carbon nanofibers: Bionanofiber assisted decoration of few-layered MoSe2 nanosheets on 3D conductive networks for efficient hydrogen evolution (small 7/2017)[J]. Small, 2017, 13(7): 13: . https://doi.org/10.1002/smll.201770040. [45] SHAN D, YANG J, LIU W, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(35): 13589-13602. [46] CAMPISI S, CHAN-THAW C E, VILLA A. Understanding heteroatom-mediated metal–support interactions in functionalized carbons: a perspective review[J]. Applied Sciences, 2018, 8(7): 1159. [47] HU Z, LI S, CHENG P, et al. N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor[J]. Journal of Materials Science, 2016, 51(5): 2627-2633. [48] WANG M, YANG Y, YANG Z, et al. Sodium-ion batteries: Improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping[J]. Advanced Science, 2017, 4(4): 1600468. [49] LUO H, XIE J, XIONG L, et al. Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets[J]. Composites Part B: Engineering, 2019, 162: 484-490. [50] LIU R, MA L, HUANG S, et al. Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors[J]. RSC Advances, 2016, 6(109): 107426-107432. [51] ZHU J, YANG Q, TAO S, et al. Fabrication and characterization of bacterial cellulose/carbon nanotube composite conductive film and its impact on the luminance of flexible electroluminescent devices as the bottom electrode[J]. Materials Science and Engineering: B, 2024, 308: 117572. [52] ZHANG J, HU S, SHI Z, et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface[J]. Nano Energy, 2021, 89: 106354. [53] SUN J, XIU K, WANG Z, et al. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome [J]. Nano Energy, 2023, 108: 108215. [54] GUAN F, XIE Y, WU H, et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS Nano, 2020, 14(11): 15428-15439. [55] LIANG Q, ZHANG D, WU Y, et al. Stretchable helical fibers with skin-core structure for pressure and proximity sensing[J]. Nano Energy, 2023, 113: 108598. [56] LING Z C, YANG H B, HAN Z M, et al. Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose[J]. NPG Asia Materials, 2023, 15: 19. [57] HU S, HAN J, SHI Z, et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator [J]. Nano-Micro Letters, 2022, 14(1): 115. [58] CHEN K, LI Y, DU Z, et al. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor [J]. Nano Energy, 2022, 102: 107740." |
[1] | ZHANG Rui, ZHENG Yingyinga, DONG Zhengmeia, ZHANG Ting, SHEN Liming, WANG Jian, ZOU Zhuanyong. Application and research progress of bionic design in smart textiles [J]. Advanced Textile Technology, 2023, 31(6): 226-240. |
[2] | LIANG Jiawen, LI Tingting, YAN Zhanlin, ZHANG Bin, CAO Chongyang, FU Zhifang, CHEN Naichao. Research progress on energy supply of wearable devices [J]. Advanced Textile Technology, 2023, 31(1): 28-39. |
[3] | FENG Yuan, ZHOU Jinli, YANG Hongying, WANG Zheng, XIONG Fan, DU Lixin. Application progress of embroidery technology in smart textiles [J]. Advanced Textile Technology, 2023, 31(1): 82-91. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 5
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||