现代纺织技术 ›› 2024, Vol. 32 ›› Issue (11): 123-133.DOI: 10.12477/xdfzjs.20241114
出版日期:
2024-11-10
网络出版日期:
2024-11-12
Published:
2024-11-10
Online:
2024-11-12
摘要: 聚对苯撑苯并二噁唑(PBO)纤维是目前综合性能最好的高性能有机纤维之一,但PBO纤维存在抗紫外光老化性能差、压缩强度低和界面粘结性能差等缺陷,无法满足航天、兵器等领域的严苛需求,因此需对其进行改性以提高性能。文章根据改性目的,从提升拉伸力学性能、提升压缩强度、改善界面粘接性能和提升抗紫外老化性能四个方面综述了近年来国内外PBO纤维共聚改性技术的研究进展,提出共聚改性应充分考虑化学结构、凝聚态结构和纺丝工艺对最终纤维性能的综合影响,并对未来PBO纤维的共聚改性技术进行了展望。
中图分类号:
张殿波, 白金旺, 钟蔚华, 梁晨, 张君贤. 聚对苯撑苯并二噁唑纤维共聚改性研究进展[J]. 现代纺织技术, 2024, 32(11): 123-133.
ZHANG Dianbo, BAI Jinwang, ZHONG Weihua, LIANG Chen, ZHANG Junxian. Research progress on copolymerization modification of poly (p-phenylene benzobisoxazole) fibers[J]. Advanced Textile Technology, 2024, 32(11): 123-133.
[1] ZHANG J T, JIN N R, GAO J R. Superior comprehensive performance of a rigid-rod poly(hydroxy-p-phenylenebenzobisoxazole) fiber[J]. Polymer, 2018,149: 325-333. [2] 刘姝瑞, 谭艳君, 霍倩, 等. PBO纤维力学强度表征其耐酸性的研究[J]. 现代纺织技术, 2017, 25(4):15-19. LIU Shurui, TAN Yanjun, HUO Qian, et al. Research on acid resistance property of PBO fiber characterized by its mechanical strength[J]. Advanced Textile Technology, 2017, 25(4): 15-19. [3] 白金旺, 张殿波, 钟蔚华, 等. 耐紫外老化PBO纤维改性技术研究进展[J]. 化工新型材料, 2024, 52(3): 22-27. BAI Jinwang, ZHANG Dianbo, ZHONG Weihua, et al. Advances in UV-resistant PBO fiber modification technologies[J]. New Chemical Materials, 2024, 52(3): 22-27. [4] LI N, HU Z, HUANG Y. Preparation and characterization of nanocomposites of poly(p-phenylene benzobisoxazole) with aminofunctionalized graphene[J]. Polymer Composites, 2018, 39(8): 2969-2976. [5] SO Y H, Rigid-rod polymers with enhanced lateral interactions[J]. Progress in Polymer Science, 2000, 25(1): 137-157. [6] CHEN L, LI Z, WU G, et al. In situ growth of TiO2 nanoparticles onto PBO fibers via a mussel‐inspired strategy for enhancing interfacial properties and ultraviolet resistance[J]. Polymer Composites, 2021, 42(10): 5065-5074. [7] CHEN, L, HU Z, LIU L, et al. A facile method to prepare multifunctional PBO fibers: Simultaneously enhanced interfacial properties and UV resistance[J]. RSC Advances, 2013, 3(46): 24664-24670. [8] SHAO Q, LU F, YU L, et al. Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: Multifunctional interface with self-healing and ultraviolet-resistance performance[J]. Journal of Colloid and Interface Science, 2021,587: 661-671. [9] 李芝华, 李慧, 刘夏清, 等. PBO纤维性能及表面改性的研究进展[J]. 包装工程, 2016, 37(19): 146-151. LI Zhihua, LI Hui, LIU Xiaqing, et al. Research progress of PBO fiber properties and surface modification[J]. Packaging Engineering, 2016, 37(19): 146-151. [10] LIU, Z, SONG, B, WANG, T, et al. Significant improved interfacial properties of PBO fibers composites by in situ constructing rigid dendritic polymers on fiber surface[J]. Applied Surface Science, 2020,512: 145719. [11] GOUTIANOS S, PEIJS T. On the low reinforcing efficiency of carbon nanotubes in high-performance polymer fibres[J]. Nanocomposites, 2021, 7(1): 53-69. [12] WOLFE J F, ARNOLD F E. Rigid-rod polymers. 1. Synthesis and thermal properties of Para-aromatic polymers with 2,6-benzobisoxazole units in the main chain[J]. Macromolecules, 1981, 14(4): 909-915. [13] 袁会齐, 张丽. 4,6-二氨基间苯二酚的研究进展[J]. 生物化工, 2019, 5(1): 136-138. YUAN Qihui, ZHANG Li. Research progress of 4,6-diamino-resorcinol[J]. Biological Chemical Engineering, 2019, 5(1): 136-138. [14] WOLFE J F, SYBERT P D, SYBERT J R. Liquid crystalline polymer compositions, process, and products: US4533693[P]. 1985-08-06. [15] GAO Z C, WANG J Q, FENG L F, et al. Flow-accelerated polycondensation reaction to prepare rigid rodlike poly(p-phenylene-cis-benzobisoxazole)[J]. Chemical Engineering and Processing-Process Intensification, 2022(176): 108972. [16] 郭玲, 赵亮, 胡娟, 等. 国产PBO纤维研究现状及发展趋势[J]. 高科技纤维与应用, 2014, 39(2): 11-15. GUO Ling, ZHAO Liang, HU Juan, et al. Research status development trend of domestic PBO fiber[J]. Hi-Tech Fiber and Application, 2014, 39(2): 11-15. [17] IMAI Y, ITOYA K, KAKIMOTO M A. Synthesis of aromatic polybenzoxazoles by silylation method and their thermal and mechanical properties[J]. Macromolecular Chemistry and Physics, 2000, 201(17): 2251-2256. [18] KITAGAWA T, MURASE H, YABUKI K. Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber[J]. Journal of Polymer Science Part B Polymer Physics, 1998, 36(1): 39-48. [19] KITAGAWA T. Novel fine structures in poly-p-phenylenebenzobisoxazole fibers induced by water vapor, hot water, and non-aqueous coagulation I molecular orientation along the fiber axis and fine structures[J].Journal of Macromolecular Science Part B, 2015, 54(11): 1323-1340. [20] TIKHONOV I V, TOKAREV A V, SHORIN S V, et al. Russian aramid fibres: Past-present-future[J]. Fibre Chemistry, 2013, 45(1): 1-8. [21] 王阳, 赵蕾, 姜波, 等. 一种基于第三单体的高性能有机纤维的制备与表征[J]. 化学与黏合, 2017, 39(1): 7-10. WANG Yang, ZHAO Lei, JIANG Bo, et al. Preparation and characterization of a high-performance organic fiber based on the third comonomer[J]. Chemistry and Adhesion, 2017, 39(1): 7-10. [22] 田雪, 周承俊, 陈晓军, 等. PBO-b-ABPBO多嵌段共聚物的制备及其性能[J]. 功能高分子学报, 2008, 21(2): 147-151. TIAN Xue, ZHOU Chengjun, CHEN Xiaojun, et al. Preparation and properties of PBO-b-ABPBO block copolymer[J]. Journal of Functional Polymers, 2008, 21(2): 147-151. [23] HAN G C, SATISH K. Making strong fibers[J]. Science, 2008, 319(5865): 908-909. [24] WANG M, ZHANG S, DONG J, et al. A facile route to synthesize nanographene reinforced PBO composites fiber via in situ polymerization[J]. Polymers, 2016, 8(7): 251-261. [25] WANG, M, WANG C, SONG Y, et al. One-pot in situ polymerization of graphene oxide nanosheets and poly(p-phenylenebenzobisoxazole) with enhanced mechanical and thermal properties[J]. Composites Science & Technology, 2017, 141: 16-23. [26] HU Z, SHAO Q, MOLONEY M G, et al. Nondestructive functionalization of graphene by surface-initiated atom transfer radical polymerization: An ideal nanofiller for poly(p-phenylene benzobisoxazole) fibers[J]. Macromolecules, 2017, 50(4): 1422-1429. [27] LI X, HUANG L, LIU H, et al. Preparation of multiwall carbon nanotubes/poly(p-phenylene benzobisoxazole) nanocomposites and analysis of their physical properties[J]. Journal of Applied Polymer Science, 2006, 102(3): 2500-2508. [28] ZHOU C, WANG S, ZHANG Y, et al. In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes[J]. Polymer, 2008, 49(10): 2520-2530. [29] LI J, CHEN X, LI X, et al. Synthesis, structure and properties of carbon nanotube/poly(p‐phenylene benzobisoxazole) composite fibres[J]. Polymer International, 2010, 55(4): 456-465. [30] CHARLES Y C, SANTHOSH U. The role of the fibrillar structures in the compressive behavior of rigid‐rod polymeric fibers[J]. Polymer Engineering & Science, 1993, 33(14): 907. [31] DANG T D, WANG C S, CLICK W E, et al. Polybenzobisthiazoles with crosslinking sites for improved fibre axial compressive strength[J]. Polymer, 1997, 38(3): 621-629. [32] SO Y H, BELL B, HEESCHEN J P, et al. Poly(p-Phenylenebenzobisoxazole) fiber with polyphenylene sulfide pendent groups[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33: 159-164. [33] SO Y H, SEN A, KIM P, ET al. Molecular composite fibers from rigid rod polymers and thermoset resin matrixes[J]. Journal of Polymer Science A Polymer Chemistry, 1995, 33(17): 2893-2899. [34] HARRIS W J, LYSENKO Z. Polybenzoxazoles having pendant methyl groups: US5151490[P]. 1992-09-29. [35] 毛婷婷, 陈汉庚, 徐继伟, 等. 2,6-二羟基-3,5-二硝基甲苯的合成新工艺[J]. 精细化工, 2015, 32(12): 1431-1436. MAO Tingting, CHEN Hangeng, XU Jiwei, et al. Novel synthesis of 2,6-dihydroxy-3,5-dinitrotoluene[J]. Fine Chemicals, 2015, 32(12): 1431-1436. [36] DEAN D R, HUSBAND D M, DOTRONG M, et al. Multidimensional benzobisoxazole rigid-rod polymers. II. Processing, characterization, and morphology[J]. Journal of Polymer Science Part A Polymer Chemistry, 1997, 35(16): 3457-3466. [37] JIANG J M, ZHU H J, LI G, et al. Poly(p-phenylene benzoxazole) fiber chemically modified by the incorporation of sulfonate groups[J]. Journal of Applied Polymer Science, 2008, 109(5): 3133-3139. [38] 金俊弘, 罗开清, 江建明, 等. 离子基团对PBO纤维的表面性能及其界面粘结性能的影响[J]. 复合材料学报, 2006, 23(6):69-74. JIN Junhong, LUO Kaiqing, JIANG Jianming, et al. Effect of ionic groups on the surface and the interfacial adhesion properties of poly(p-phenylene benzoxazole) (PBO) fiber[J]. Acta Materiae Compositae Sinica, 2006, 23(6):69-74. [39] ZHANG T, HU D, JIN J, et al. Improvement of surface wettability and interfacial adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J]. European Polymer Journal, 2009, 45(1): 302-307. [40] YALVAC S, JAKUBOWSKI J J, SO Y H, et al., Improved interfacial adhesion via chemical coupling of cis-polybenzobisoxazole fibre-polymer systems[J]. Polymer, 1996, 37(20): 4657-4659. [41] WALSH P, HU X, CUNNIFF P, et al. Environmental effects on poly-p-phenylenebenzobisoxazole fibers. I. Mechanisms of degradation.[J] Journal of Applied Polymer Science, 2010, 102(4): 3517-3525. [42] SO Y H, MARTIN S J, BELL B, et al. Importance of π-stacking in photoreactivity of aryl benzobisoxazole and aryl benzobisthiazole compounds[J]. Macromolecules, 2003, 36(13): 4699-4708. [43] SAID M A, DINGWALL B, GUPTA A, et al. Investigation of ultra violet (UV) resistance for high strength fibers[J]. Advances in Space Research, 2006, 37(11): 2052-2058. [44] 宋波, 傅倩, 刘小云, 等. PBO纤维的紫外光老化及防老化研究[J]. 固体火箭技术, 2011, 34(3): 378-383. SONG Bo, FU Qian, LIU Xiaoyun, et al. Study on the photolysis and stabilization of PBO fiber[J]. Journal of Solid Rocket Technology, 2011, 34(3): 378-383. [45] 张利, 蔡小川, 许汉, 等. 基于PBO共聚物改性纤维的制备及其耐紫外光老化性能的研究[J]. 山东化工, 2015, 44(19): 10-14. ZHANG Li, CAI Xiaochuan, XU Han, et al. Preparation of modified fiber based on PBO copolymer and study of its anti-ultraviolet ageing performance[J]. Shandong Chemical Industry, 2015, 44(19): 10-14. [46] ZHANG T, JIN J, YANG S, et al. UV accelerated aging and aging resistance of dihydroxy poly(p-phenylene benzobisoxazole) fibers[J]. Polymers for Advanced Technologies, 2011, 22(5): 743-747. [47] JANG Y W, MIN B G, YOON K H. Enhancement in compressive strength and UV ageing-resistance of poly(p-phenylene benzobisoxazole) nanocomposite fiber containing modified polyhedral oligomeric silsesquioxane[J]. Fibers and Polymers, 2017, 18(3): 575-581. [48] LI Z F, LU F, LU S, et al. Fabrication of uvioresistant poly(p-phenylene benzobisoxazole) fibers based on hydrogen bond[J]. Journal of Applied Polymer Science, 2020,137(9): 48432-48443. [49] WANG Q W, YOON K H, MIN B G. Chemical and physical modification of poly(p-phenylene benzobisoxazole) polymers for improving properties of the PBO fibers. I. Ultraviolet-ageing resistance of PBO fibers with naphthalene moiety in polymer chain[J]. Fibers and Polymers, 2015, 16(1): 1-7. [50] LI J, WANG W, ZHAO L, et al. In situ synthesis of PBO-α-(amino phthalocyanine copper) composite fiber with excellent UV-resistance and tensile strength[J]. Journal of Applied Polymer Science, 2018, 135(48): 46870-46880. |
[1] | 田源, 许巧丽, 薛惊理, 金光, 牟黄波, 杜赵群. 变关键参数下Miura-ori结构机织物的性能[J]. 现代纺织技术, 2025, 33(06): 36-41. |
[2] | 黄鑫鑫, 陈康, 殷亚然, 张先明. 不同预加张力热处理下尼龙66工业丝的结构性能演变[J]. 现代纺织技术, 2025, 33(01): 10-20. |
[3] | 裴龙仓, 张乐, 陈世昌. 多级牵伸和热定型过程中涤纶工业丝的结构与性能演变[J]. 现代纺织技术, 2024, 32(8): 56-66. |
[4] | 范洋瑞, 钱建华, 余德游, 郭玉海, 戴宏翔, 李成才. 聚氯乙烯纤维熔融纺丝及其结构与性能[J]. 现代纺织技术, 2024, 32(7): 42-47. |
[5] | 李登高, 刘成霞. 有限元分析技术在织物力学性能领域的应用[J]. 现代纺织技术, 2024, 32(6): 129-141. |
[6] | 肖珂莹, 崔思怡, 林少武, 王雪琴. 填充物的力学性能对坐垫舒适性影响的仿真分析[J]. 现代纺织技术, 2024, 32(4): 21-28. |
[7] | 陈俊鹏, 王小东, 张积康, 吕鹏, 裴泽光. 层叠式织物压力分布传感系统的构建及测试[J]. 现代纺织技术, 2024, 32(2): 9-17. |
[8] | 苏妮妮, 吴莹, 田伟, 祝成炎. 脱胶处理对单向蚕丝/PCL复合材料性能的影响[J]. 现代纺织技术, 2024, 32(11): 81-88. |
[9] | 王勇, 杜平凡. 长余辉海藻酸钠纤维的制备及其性能[J]. 现代纺织技术, 2024, 32(10): 78-84. |
[10] | 郑硕, 王勇军, 金依林, 王刚强, 戴钧明, 吕汪洋. 超高强型超高分子量聚乙烯纤维多级热拉伸过程中的蠕变行为[J]. 现代纺织技术, 2024, 32(10): 85-93. |
[11] | 明 琳, 冯旭煌, 邵灵达, 丁 昊, 孙泽宇, 马雷雷, 田 伟, 祝成炎. 氢氧化钠处理对GF/VER复合材料界面及力学性能的影响[J]. 现代纺织技术, 2023, 31(6): 100-109. |
[12] | 刘术, 侯腾, 周乐乐, 周静, 李祥龙, 杨斌. 不同品种桑蚕牵伸丝的结构与性能[J]. 现代纺织技术, 2023, 31(5): 125-131. |
[13] | 夏兆鹏, 潘佳俊, 张海宝, 卢佳浩, 胡高强. 迷彩面料室内加速老化过程及其性能变化[J]. 现代纺织技术, 2023, 31(5): 198-205. |
[14] | 姬洪, 宋明根, 张玥, 陈康, 张玉梅. 共聚型阻燃聚酯工业丝的纺丝成形[J]. 现代纺织技术, 2023, 31(4): 56-62. |
[15] | 骆宣耀, 韦粤海, 马雷雷, 田伟, 祝成炎. 硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响[J]. 现代纺织技术, 2023, 31(4): 103-110. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||