现代纺织技术 ›› 2023, Vol. 31 ›› Issue (1): 248-258.DOI: 10.19398/j.att.202207023
赵树颖a, 张莹洁a, 李彦a,b, 王璐a,b
收稿日期:
2022-07-11
出版日期:
2023-01-10
网络出版日期:
2023-01-17
通讯作者:
李彦,E-mail:yanli@dhu.edu.cn
作者简介:
赵树颖(1998—),女,山东威海人,硕士研究生,主要从事医用纺织材料的设计与制备方面的研究。
基金资助:
ZHAO Shuyinga, ZHANG Yingjiea, LI Yana,b, WANG Lua,b
Received:
2022-07-11
Published:
2023-01-10
Online:
2023-01-17
摘要: 细菌生物膜是细菌通过自身分泌的胞外聚合物黏附在物体接触面上而形成含有多细胞的三维结构群体,生物膜导致的细菌感染给患者身体健康和社会经济造成危害,是目前医疗卫生领域面临的一大挑战。相比于浮游细菌来说,形成生物膜的细菌有更加复杂的形态结构与生理作用,导致抗生素难以渗透、常规剂量下疗效差,亟需新型的干预及治疗手段。纳米纤维因其比表面积高、表面可设计性强等优势成为了抗生物膜剂的优势载体,目前已被制成植入式医疗器械涂层及伤口敷料进行生物膜的应对。本文在总结生物膜的形成及危害的基础上,重点阐述基于纳米纤维从防止生物膜形成、分解或靶向胞外聚合物基质、抑制信号分子等方法入手的生物膜清除方法,以凸显纳米纤维在预防及应对生物膜方面的潜力。
中图分类号:
赵树颖, 张莹洁, 李彦, 王璐. 用于细菌生物膜感染治疗的纳米纤维的研究进展[J]. 现代纺织技术, 2023, 31(1): 248-258.
ZHAO Shuying, ZHANG Yingjie, LI Yan, WANG Lu. Research progress of nanofibers for treatment of biofilm-related infections[J]. Advanced Textile Technology, 2023, 31(1): 248-258.
[1] LI X, CHEN D, XIE S. Current progress and prospects of organic nanoparticles against bacterial biofilm[J]. Advances in Colloid and Interface Science, 2021, 294: 102475. [2] 周晶,霍丽珺,雷雅燕,等.生物膜胞外聚合物研究进展[J].昆明医科大学学报,2021,42(4):150-154. ZHOU Jing, HUO Lijun, LEI Yayan, et al. Advances in extracellular polymeric substances in biofilm[J]. Journal of Kunming Medical University, 2021, 42(4): 150-154. [3] 郑杨,查何.金黄色葡萄球菌生物膜防治研究进展[J].中国医药导报,2021,18(18):32-35. ZHENG Yang, ZHA He. Research progress in biofilm prevention and treatment of Staphylococcus aureus[J]. China Medical Herald, 2021, 18(18): 32-35. [4] 孙长龙,吴思,张倩楠,等.基于群体感应调控细菌生物膜形成研究进展[J].山东化工,2021,50(2):89-91. SUN Changlong, WU Si, ZHANG Qiannan, et al. Advances in the regulation of bacterial biofilm formation based on quorum sensing[J]. Shandong Chemical Industry, 2021, 50(2): 89-91. [5] FAZLI M, ALMBLAD H, RYBTKE M L, et al. Regulation of biofilm formation in pseudomonas and burkholderia species[J]. Environmental Microbiology, 2014,16(7):1961-1981. [6] JUHAS M, EBERL L, TUMMLER B. Quorum sensing: The power of cooperation in the world of pseudomonas[J]. Environmental Microbiology, 2005, 7(4): 459-471. [7] MURRAY C J L, IKUTA K S, SHARARA F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis[J]. Lancet, 2022, 399(10325): 629-655. [8] FU Y, LI X, REN Z, et al. Multifunctional electrospun nanofibers for enhancing localized cancer treatment[J]. Small, 2018, 14(33): 1801183 [9] SHAHRIAR S M S, MONDAL J, HASAN M N, et al. Electrospinning nanofibers for therapeutics delivery[J]. Nanomaterials, 2019, 9(4): 532. [10] PHAM S H, CHOI Y, CHOI J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery[J]. Pharmaceutics, 2020, 12(7): 630. [11] METCALF D G, BOWLER P G. Biofilm delays wound healing: A review of the evidence[J]. Burns & Trauma, 2013, 1(1): 5-12. [12] SUBHADRA B, KIM D H, WOO K, et al. Control of biofilm formation in healthcare: Recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors[J]. Materials, 2018, 11(9): 1676. [13] VERDEROSA A D, TOTSIKA M, FAIRFULL-SMITH K E. Bacterial biofilm eradication agents: A current review[J]. Frontiers in Chemistry, 2019, 7: 824. [14] ARCIOLA C R, CAMPOCCIA D, MONTANARO L. Implant infections: adhesion, biofilm formation and immune evasion[J]. Nature Reviews Microbiology, 2018, 16(7): 397-409. [15] WU Y K, CHENG N C, CHENG C M. Biofilms in chronic wounds: pathogenesis and diagnosis[J]. Trends in Biotechnology, 2019, 37(5): 505-517. [16] 林迪,孙长贵.生物膜研究相关进展[J].临床检验杂志,2017,35(4):241-245. LIN Di, SUN Changgui. Progress in biofilm research[J]. Chinese Journal of Clinical Laboratory Science, 2017, 35(4): 241-245. [17] LIU Y, LI Y, SHI L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections[J]. Journal of Controlled Release, 2021, 329: 1102-1116. [18] FILIPOVIC U, DAHMANE R G, GHANNOUCHI S, et al. Bacterial adhesion on orthopedic implants[J]. Advances in Colloid and Interface Science, 2020, 283: 102228. [19] GRISTINA A G, DOBBINS J J, GIAMMARA B, et al. Biomaterial-centered sepsis and the total artificial heart. Microbial adhesion vs tissue integration[J]. Journal of the American Medical Association, 1988, 259(6): 870-874. [20] COSTA R C, NAGAY B E, BERTOLINI M, et al. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections[J]. Advances in Colloid and Interface Science, 2021, 298: 102551. [21] RODRIGUEZ-MERCHAN E C, DAVIDSON D J, LIDDLE A D. Recent strategies to combat infections from biofilm-forming bacteria on orthopaedic implants[J]. International Journal of Molecular Sciences, 2021, 22(19): 10243. [22] 曹晋桂,刘鹏.细菌生物膜、滞留菌及其相关感染防控研究进展[J].中国感染控制杂志,2019,18(5):369-374. CAO Jingui, LIU Peng. Research progress of bacterial biofilm, persisters, as well as prevention and control for the related infection[J]. Chinese Journal of Infection Control, 2019, 18(5): 369-374. [23] 江琰笛,朱晶晶,陶崑,等.慢性难愈合创面与细菌生物膜形成相关性研究进展[J].中国消毒学杂志,2021,38(5):377-380. JIANG Yandi, ZHU Jingjing, TAO Kun, et al. Research progress on the correlation between chronic refractory wound and bacterial biofilm formation[J]. Chinese Journal of Disinfection, 2021, 38(5): 377-380. [24] MALLICK S, NAG M, LAHIRI D, et al. Engineered nanotechnology: An effective therapeutic platform for the chronic cutaneous wound[J]. Nanomaterials, 2022, 12(5): 778. [25] MAHESWARY T, NURUL A A, FAUZI M B. The insights of microbes' roles in wound healing: A compre-hensive review[J]. Pharmaceutics, 2021, 13(7): 981. [26] DARVISHI S, TAVAKOLI S, KHARAZIHA M, et al. Advances in the sensing and treatment of wound biofilms[J]. Angewandte Chemie, 2022,61(13): e202112218. [27] MIHAI M M, PREDA M, LUNGU I, et al. Nanocoatings for chronic wound repair-modulation of microbial colonization and biofilm formation[J]. International Journal of Molecular Sciences, 2018, 19(4): 1179. [28] 肖吉,邱旭升,陈一心.细菌生物膜及利用植入物表面修饰防治的研究进展[J].中国骨与关节损伤杂志,2017,32(10):1119-1120. XIAO Ji, QIU Xusheng, CHEN Yixin. Research progress of bacterial biofilm and implant surface modification for control[J]. Chinese Journal of Bone and Joint Injury, 2017, 32(10): 1119-1120. [29] FRYKBERG R G, BANKS J. Challenges in the treatment of chronic wounds[J]. Advances in Wound Care, 2015, 4(9): 560-582. [30] ZHANG Y, YU J, ZHANG H, et al. Nanofibrous dressing: Potential alternative for fighting against antibiotic-resistance wound infections[J]. Journal of Applied Polymer Science, 2022, 139(20): e52178. [31] WANG Y, SUN H. Polymeric Nanomaterials for efficient delivery of antimicrobial agents[J]. Pharma-ceutics, 2021, 13(12): 2108. [32] LIU M, WANG F, LIANG M, et al. In situ green synthesis of rechargeable antibacterial n-halamine grafted poly(vinyl alcohol) nanofibrous membranes for food packaging applications[J]. Composites Communications, 2020, 17: 147-153. [33] ROSTAMABADI H, ASSADPOUR E, TABARESTANI H S, et al. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations[J]. Trends in Food Science & Technology, 2020, 100: 190-209. [34] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34): 8533-8554. [35] 熊富忠,赵小希,廖胤皓,等.材料表面特征对生物膜形成的影响及其应用[J].微生物学通报,2018,45(1):155-165. XIONG Fuzhong, ZHAO Xiaoxi, LIAO Yinhao, et al. Effects of surface properties on biofilm formation and the related applications[J]. Microbiology China, 2018, 45(1): 155-165. [36] ZHU X, JANCZEWSKI D, GUO S, et al. Polyion multi-layers with precise surface charge control for antifouling[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 852-861. [37] IVANOVA E P, TRUONG V K, WANG J Y, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention[J]. Langmuir, 2010, 26(3): 1973-1982. [38] QI M, GONG X, WU B, et al. Landing dynamics of swimming bacteria on a polymeric surface:Effect of surface properties[J]. Langmuir, 2017, 33(14): 3525-3533. [39] PENG Q, ZHOU X, WANG Z, et al. Three-dimensional bacterial motions near a surface investigated by digital holographic microscopy: Effect of surface stiffness[J]. Langmuir, 2019, 35(37): 12257-12263. [40] CZAPKA T, WINKLER A, MALISZEWSKA I, et al. Fabrication of photoactive electrospun cellulose acetate nanofibers for antibacterial applications[J]. Energies, 2021, 14(9): 2598. [41] MA Y, ZHANG Z, NITIN N, et al. Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation[J]. Journal of Colloid and Interface Science, 2020, 578: 779-787. [42] ABRIGO M, KINGSHOTT P, MCARTHUR S L. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth[J]. ACS Applied Materials & Interfaces, 2015, 7(14): 7644-7652. [43] FERRARIS S, GIACHET F T, MIOLA M, et al. Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion[J]. Materials Science & Engineering C,Materials for Biological Applications, 2017, 76: 1-12. [44] COCHIS A, FERRARIS S, SORRENTINO R, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing[J]. Journal of Materials Chemistry B, 2017, 5(42): 8366-8377. [45] 陈小楠,申元娜,李彭宇,等.细菌生物膜的特征及抗细菌生物膜策略[J].药学学报,2018,53(12):2040-2049. CHEN Xiaonan, SHEN Yuanna, LI Pengyu, et al. Bacterial biofilms: Characteristics and combat strategies[J]. Acta Pharmaceutica Sinica, 2018,53(12):2040-2049. [46] JAMALEDIN R, YIU C K Y, ZARE E N, et al. Advances in antimicrobial microneedle patches for combating infections[J]. Advanced Materials, 2020, 32(33): 2002129. [47] SU Y, MAINARDI V L, WANG H, et al. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide[J]. ACS Nano, 2020, 14(9): 11775-11786. [48] SU Y, MCCARTHY A, WONG S L, et al. Simultaneous delivery of multiple antimicrobial agents by biphasic scaffolds for effective treatment of wound biofilms[J]. Advanced Healthcare Materials, 2021, 10(12): 2100135. [49] FLEMING D, RUMBAUGH K P. Approaches to dispersing medical biofilms[J]. Microorganisms, 2017, 5(2): 15. [50] HUANG H, REN H, DING L, et al. Aging biofilm from a full-scale moving bed biofilm reactor: Charac-terization and enzymatic treatment study[J]. Bioresource Technology, 2014, 154: 122-130. [51] BURTON E, GAWANDE P V, YAKANDAWALA N, et al. Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(5): 1835-1840. [52] PARK J A, LEE S C, KIM S B. Synthesis of dual-functionalized poly(vinyl alcohol)/poly(acrylic acid) electrospun nanofibers with enzyme and copper ion for enhancing anti-biofouling activities[J]. Journal of Materials Science, 2019, 54(13): 9969-9982. [53] PIARALI S, MARLINGHAUS L, VIEBAHN R, et al. Activated polyhydroxyalkanoate meshes prevent bacterial adhesion and biofilm development in regenerative medicine applications[J]. Frontiers in Bioengineering and Biotech-nology, 2020, 8: 442. [54] HU X, HUANG Y Y, WANG Y, et al. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections[J]. Frontiers in Microbiology, 2018, 9: 1299. [55] BEIRAO S, FERNANDES S, COELHO J, et al. Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin[J]. Photochemistry and Photobiology, 2014, 90(6): 1387-1396. [56] JIANG S, MA B C, HUANG W, et al. Visible light active nanofibrous membrane for antibacterial wound dres-sing[J]. Nanoscale Horizons, 2018, 3(4): 439-446. [57] KHALEK M A A, GABER S A A, EL-DOMANY R A, et al. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ ciprofloxacin nanofibers for chronic wound healing[J]. International Journal of Biological Macromolecules, 2021, 193: 1752-1766. [58] SHI Y G, JIANG L, LIN S, et al. Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens[J]. Food Chemistry, 2022, 374: 131585. [59] KALIA V C, PATEL S K S, KANG Y C, et al. Quorum sensing inhibitors as antipathogens: Biotech-nological applications[J]. Biotechnology Advances, 2019, 37(1): 68-90. [60] LEE J, LEE I, NAM J, et al. Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15424-15432. [61] MASLAKCI N N, AKALIN R B, ULUSOY S, et al. Electrospun fibers of chemically modified chitosan for in situ investigation of the effect on biofilm formation with quartz crystal microbalance method[J]. Industrial & Engineering Chemistry Research, 2015, 54(33): 8010-8018. [62] 王颖思,周刚,彭红,等.一氧化氮在细菌抗药性和生物膜形成中的分子作用[J].工业微生物,2017,47(5):59-65. WANG Yingsi, ZHOU Gang, PENG Hong, et al. Progress in molecular functions of nitric oxide in bacterial resistance mechanisms and biofilm formation[J]. Industrial Microbiology, 2017, 47(5): 59-65. [63] CAI Y M, ZHANG Y D, YANG L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections[J]. Applied Microbiology and Biotech-nology, 2021, 105(10): 3931-3954. [64] JENAL U, REINDERS A, LORI C. Cyclic di-GMP: Second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271-284. [65] LI M, LI N, QIU W, et al. Phenylalanine-based poly(ester urea)s composite films with nitric oxide-releasing capability for anti-biofilm and infected wound healing applications[J]. Journal of Colloid and Interface Science, 2022, 607: 1849-1863. |
[1] | 葛烨倩, 徐佳琦, 曹 琪, 张霞霞, 王益峰, 许福军. TiO2纳米纤维的制备及其光催化降解染料性能[J]. 现代纺织技术, 2023, 31(2): 197-. |
[2] | 仇慧丽, 杨群, 崔进, 裴刘军, 胡庚昊. 防水透湿膜在纺织上的应用及研究进展[J]. 现代纺织技术, 2023, 31(2): 244-. |
[3] | 杨海贞, 马闯, 魏肃桀, 周泽林, 田征坤. 静电纺丝碳纳米管基复合材料在传感器中的应用研究进展[J]. 现代纺织技术, 2023, 31(2): 256-. |
[4] | 朱染染, 岳洪印, 陈永辉, 李惠军. 静电纺PCL纤维膜的制备及其性能[J]. 现代纺织技术, 2023, 31(1): 130-135. |
[5] | 王灵晓, 徐桂龙, 唐敏, 梁云. 静电纺芳纶纳米纤维膜的制备及其过滤性能[J]. 现代纺织技术, 2023, 31(1): 136-144. |
[6] | 王占凯, 徐世龙, 杨世玉, 胡毅, 胡柳. 锌酞菁接枝纤维素纳米纤维膜的制备及其染料降解性能[J]. 现代纺织技术, 2023, 31(1): 204-212. |
[7] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 基于水浴静电纺的纳米纤维包芯纱连续制备与性能[J]. 现代纺织技术, 2022, 30(6): 80-87. |
[8] | 卫智毅, 王慧, 余天培, 程辉, 马信, 李守柱. 二氧化硅基纳米纤维气凝胶的研究进展[J]. 现代纺织技术, 2022, 30(6): 231-241. |
[9] | 王慧佳, 陈强, 易雨青, 施静雅, 李妮. 扩链时间对聚氨酯及其静电纺纳米纤维性能的影响[J]. 现代纺织技术, 2022, 30(5): 67-73. |
[10] | 李箫, 刘元军, 赵晓明. 静电纺丝纳米纤维基吸声材料的研究进展[J]. 现代纺织技术, 2022, 30(5): 246-258. |
[11] | 石敏, 王騊, 王晟. 快速油-水分离用PVDF/PDMS超疏水膜的一步法制备及性能[J]. 现代纺织技术, 2022, 30(4): 108-114. |
[12] | 韦悦, 王晟, 纪律律. 硫化镍复合碳纳米纤维的制备及其电催化析氢性能[J]. 现代纺织技术, 2022, 30(3): 81-88. |
[13] | 郑作保, 贾姣, 冯洋洋, 侯一杰, 贾永堂. 静电纺丝制备PMMA/PU新型保暖材料及其性能[J]. 现代纺织技术, 2022, 30(3): 89-96. |
[14] | 贾子奇, 王琛, 赵甜甜, 刘扬. 氮掺杂氧化石墨烯-TiO2/ PAN复合纳米纤维膜的制备及其光催化性能[J]. 现代纺织技术, 2022, 30(3): 97-107. |
[15] | 周荣鑫, 葛烨倩. 碳纳米纤维负极材料制备及其电化学性能[J]. 现代纺织技术, 2022, 30(1): 41-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||