现代纺织技术 ›› 2023, Vol. 31 ›› Issue (3): 102-112.
收稿日期:
2022-07-05
出版日期:
2023-05-10
网络出版日期:
2023-05-25
作者简介:
杨婷(1999—),女,福建福州人,硕士研究生,主要从事纤维光催化还原方面的研究。
Received:
2022-07-05
Published:
2023-05-10
Online:
2023-05-25
摘要: 以二氧化碳(CO2)为代表的温室气体可以利用催化剂在太阳光的作用下转化为可回收产物。TiO2化学性能稳定、毒性低且生物友好,是制备高效光催化剂的备选原料之一。本文对TiO2催化机理、主要成形工艺和相关改性处理方法进行介绍,并分析材料内部电子运动、光生电子空穴分离和光子吸收效率,探究其对以TiO2为主体的纳米纤维光催化效率的影响。通过分析对比,为TiO2纤维结构的设计和对应CO2产物的还原研究提供思路。
中图分类号:
杨婷, 张叶轲, 周文龙, 刘宇清. TiO2纤维在光催化还原CO2中的应用[J]. 现代纺织技术, 2023, 31(3): 102-112.
YANG Ting, ZHANG Yeke, ZHOU Wenlong, LIU Yuqing. Application of photocatalytic titanium dioxide fibers in carbon dioxide reduction[J]. Advanced Textile Technology, 2023, 31(3): 102-112.
[1]ZHOU A W, DOU Y B, ZHAO C, et al. A leaf-branch TiO2/Carbon@MOF composite for selective CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2020, 264: 118519. [2]QI K Z, CHENG B, YU J G, et al. A review on TiO2-based Z-scheme photocatalysts[J]. Chinese Journal of Catalysis, 2017, 38(12): 1936-1955. [3]ZHANG J Y, XIAO G C, XIAO F X, et al. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review[J]. Materials Chemistry Frontiers, 2017, 1(2): 231-250. [4]张兆国. 高光催化效能二氧化钛材料的性能优化研究[D]. 杭州: 浙江大学, 2016. ZHANG Zhaoguo. Study on Performance Optimization of Titanium Dioxide with High Photocatalytic Efficiency[D]. Hangzhou: Zhejiang University, 2016. [5]SHEHZAD N, TAHIR M, JOHARI K, et al. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency[J]. Journal of CO2 Utilization, 2018, 26: 98-122. [6]FU J W, JIANG K X, QIU X Q, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243. [7]BUZZETTI L, CRISENZA G E M, MELCHIORRE P. Mechanistic studies in photocatalysis[J]. Angewandte Chemie International Edition,, 2019, 58(12): 3730-3747. [8]WANG W, YANG R X, LI T, et al. Advances in recyclable and superior photocatalytic fibers: Material, construction, application and future perspective[J]. Composites Part B: Engineering, 2021, 205: 108512. [9]LIAS J, Mohd Fauzi M H F, SAHDAN M Z, et al. The effect of deposition time on the properties of titanium dioxide thin film prepared using CVD[J]. IOP Conference Series Materials Science and Engineering, 2020, 982(1): 012064. [10]HUANG C Y, GUO R T, PAN W G, et al. One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction[J]. Applied Surface Science, 2019, 464: 534-543. [11]FARZANEH A, JAVIDANI M, ESRAFILI M D, et al. Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations[J]. Journal of Physics and Chemistry of Solids,2022, 161: 110404. [12]PRAKASH J, SAMRITI, KUMAR A, et al. Novel rare earth metal-doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications[J]. Materials Today Sustainability, 2021, 13: 100066. [13]MAZINANI A, RASTIN H, NINE M J, et al. Comparative antibacterial activity of 2D materials coated on porous-titania[J]. Journal of Materials Chemistry B, 2021, 9(32): 6412-6424. [14]HEGDE S, MALIK H, CARLSON K, et al. Detecting benzene vapor via a low-cost nanostructured TiO2 sensor[J]. IEEE Sensors Journal, 2021, 21(12): 13828-13836. [15]LIANG S Z, WANG X Y, CHENG Y J, et al. Anatase titanium dioxide as rechargeable ion battery electrode-A chronological review[J]. Energy Storage Materials, 2022, 45: 201-264. [16]DARBANDI M, SHAABANI B, SCHNEIDER J, et al. TiO2 nanoparticles with superior hydrogen evolution and pollutant degradation performance[J]. International Journal of Hydrogen Energy, 2019, 44(44): 24162-24173. [17]CHEN D J, CHENG Y L, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. Journal of Cleaner Production, 2020, 268: 121725. [18]LI Z L, LI Z Q, ZUO C L, et al. Application of nanostructured TiO2 in UV photodetectors: A review[J]. Advanced Materials, 2022, 34(28): 2109083. [19]Yamakata A, Vequizo J J M. Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: A review[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 234-243. [20]李玉娟. 金红石型结构氧化物的高压相变[D]. 北京: 北京大学, 2006. LI Yujuan. High-pressure Structural Phase Transitions of Rutile-type Oxides[D]. Beijing: Peking University, 2006. [21]FU J W, CAO S W, YU J G, et al. Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment[J]. Dalton Transactions, 2014, 43(24): 9158-9165. [22]邹云玲. 基于板钛矿型TiO2的纳米光催化剂的制备及其光催化性能研究[D]. 天津: 天津大学, 2016. ZOU Yunling. Preparation and Photocatalytic Properties of Brookite TiO2 Based Nano-structured Materials[D]. Tianjin: Tianjin University, 2016. [23]ZHANG H Z, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3481-3487. [24]RELI M, KOBIELUSZ M, MATĚJOVÁ L, et al. TiO2 processed by pressurized hot solvents as a novel photocatalyst for photocatalytic reduction of carbon dioxide[J]. Applied Surface Science, 2017, 391: 282-287. [25]WANG P Q, BAI Y, LIU J Y, et al. One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catalysis Communications, 2012, 29: 185-188. [26]ZHANG J F, FU J W, CHEN S F, et al. 1D carbon nanofibers@TiO2 core-shell nanocomposites with enhanced photocatalytic activity toward CO2 reduction[J]. Journal of Alloys and Compounds, 2018, 746: 168-176. [27]WANG X Y, ZHANG Z G, HUANG Z F, et al. Electrospun PVDF nanofibers decorated with graphene and titania for improved visible light photocatalytic methanation of CO2[J]. Plasmonics, 2020, 15(3): 717-725. [28]LEI Z, XIONG Z, WANG Y C, et al. Photocatalytic reduction of CO2 over facet engineered TiO2 nanocrystals supported by carbon nanofibers under simulated sunlight irradiation[J]. Catalysis Communications, 2018, 108: 27-32. [29]OLA O, MAROTO-VALER M, LIU D, et al.Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation[J]. Applied Catalysis B: Environmental, 2012, 126: 172-179. [30]ROSALES M, ZOLTAN T, YADAROLA C, et al. The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity[J]. Journal of Molecular Liquids, 2019, 281: 59-69. [31]SOM I, ROY M. Recent development on titania-based nanomaterial for photocatalytic CO2 reduction: A review[J]. Journal of Alloys and Compounds, 2022, 918: 165533. [32] KANG S, KHAN H, LEE C S. CO2 selectivity of flower-like MoS2 grown on TiO2 nanofibers coated with acetic acid-treated graphitic carbon nitride[J]. Solar Energy Materials and Solar Cells, 2021, 221: 110890. [33]SUN Y Y, ZONG Z M ,LI Z K, et al. Seed-assisted thermal growth of one-dimensional TiO2 nanomaterials on carbon fibers[J]. Ceramics International, 2017, 43(3): 3171-3176. [34]YANG Y L, CHEN H J, ZOU X X, et al. Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24845-24854. [35]WANG X X, NI Q, ZENG D W, et al. Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene[J]. Applied Surface Science, 2016, 389: 165-172. [36]XU X T, ZHANG W Z, LI Y Y, et al. Preparation and characterization of anatase titanium dioxide fibre by electrospinning[J]. Bulletin of Materials Science, 2022, 45: 127. [37]XU F Y, ZHANG J J, ZHU B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 230: 194-202. [38] XU F Y, MENG K, CHENG B, et al.Enhanced photocatalytic activity and selectivity for CO2 reduction over a TiO2 nanofibre mat using Ag and MgO as Bi-cocatalyst[J]. ChemCatChem, 2019, 11(1): 465-472. [39]KANG S M, HWANG J. rGO-wrapped Ag-doped TiO2 nanofibers for photocatalytic CO2 reduction under visible light[J]. Journal of Cleaner Production, 2022, 374(26): 134022. [40] XU F Y, MENG K, ZHU B C, et al. Graphdiyne: A new photocatalytic CO2 reduction cocatalyst[J]. Advanced Functional Materials, 2019, 29(43): 1904256. [41]LIN T H, WU M C, CHIANG K P, et al. Unveiling the surface precipitation effect of Ag ions in Ag-doped TiO2 nanofibers synthesized by one-step hydrothermal method for photocatalytic hydrogen production[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120: 291-299. [42]CRAKE A, CHRISTOFORIDIS K C, GREGG A, et al. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer[J]. Small, 2019, 15(11): 1805473. [43]YANG D J, LIU H W, ZHENG Z F, et al. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals[J]. Journal of the American Chemical Society, 2009, 131(49): 17885-17893. [44]XIONG C R, BALKUS K J. Fabrication of TiO2 nanofibers from a mesoporous silica film[J]. Chemistry of Materials, 2005, 17(20): 5136-5140. [45]柯银环, 曾敏, 姜宏, 等. N掺杂TiO2纳米纤维高可见光催化CO2合成甲醇[J]. 无机材料学报, 2018, 33(8): 839-844. KE Yinhuan, ZENG Min, JIANG Hong, et al. Photocatalytic reduction of carbon dioxide to methanol over N-doped TiO2 nanofibers under visible irradiation[J]. Journal of Inorganic Materials, 2018, 33(8): 839-844. [46]谈恒, 肖洒, 姚淑荣, 等. CuO/TiO2纳米纤维可见光催化CO2合成甲醇[J]. 精细化工, 2019, 36(6): 1210-1216. TAN Heng, XIAO Sa, YAO Shurong, et al. Visible light driven reduction of CO2 to methanol over CuO/TiO2 nanofibers[J]. Fine Chemicals, 2019, 36(6): 1210-1216. [47]文曼, 任贝贝, 叶祥志, 等. CuO-SiO2气凝胶@TiO2纳米纤维无牺牲剂光催化还原CO2 [J]. 精细化工, 2021, 38(5): 981-987. WEN Man, REN Beibei, YE Xiangzhi, et al. CuO-SiO2 aerogel@TiO2 nanofibers photocatalyzing reduction of CO2 without sacrificial agent[J]. Fine Chemicals, 2021, 38(5): 981-987. [48]CAMARILLO R, RIZALDOS D, JIMÉNEZ C, et al. Enhancing the photocatalytic reduction of CO2 with undoped and Cu-doped TiO2 nanofibers synthesized in supercritical medium[J]. The Journal of Supercritical Fluids, 2019, 147: 70-80. [49]LIM J H, CHOI J. Titanium oxide nanowires originating from anodically grown nanotubes: The bamboo-splitting model[J]. Small (Weinheim an Der Bergstrasse, Germany), 2007, 3(9): 1504-1507. [50]TAVANGAR A, TAN B, VENKATAKRISHNAN K. Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation[J]. Acta Biomaterialia, 2011, 7(6): 2726-2732. [51]WANG Y O, SILVERI F, Bayazit M K, et al. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting[J]. Advanced Energy Materials, 2018, 8(24): 1801084. [52]JIANG X Y, HUANG J D, BI Z H, et al. Plasmonic active ′′hot spots′′-confined photocatalytic CO2 reduction with high selectivity for CH4 production[J]. Advanced Materials, 2022, 34(14): 2109330. [53]AMBROŽOVÁ N, RELI M, ŠIHOR M, et al. Copper and platinum doped titania for photocatalytic reduction of carbon dioxide[J]. Applied Surface Science, 2018, 430: 475-487. [54]ZHANG Z Y, WANG Z, CAO S W, et al. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion[J]. The Journal of Physical Chemistry C, 2013, 117(49): 25939-25947. [55]LIU J J, ZHANG L Y, FAN J J, et al. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres[J]. Sensors and Actuators B Chemical, 2021, 331: 129425. [56]COMPAGNONI M, VILLA A, BAHDORI E, et al. Surface probing by spectroscopy on titania-supported gold nanoparticles for a photoreductive application[J]. Catalysts, 2018, 8(12): 623. [57]YANG S S, RAO D W, YE J J, et al. Mechanism of transition metal cluster catalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3484-3492. [58]KANG S, KHAN H, LEE C H, et al. Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2021, 420: 130496. [59]BJELAJAC A, PETROVIĆ R, POPOVIĆ M, et al. Doping of TiO2 nanotubes with nitrogen by annealing in ammonia for visible light activation: Influence of pre- and post-annealing in air[J]. Thin Solid Films, 2019, 692: 137598. [60]PENG H, GUO R T, LIN H. Photocatalytic reduction of CO2 over Sm-doped TiO2 nanoparticles[J]. Journal of Rare Earths, 2020, 38(12): 1297-1304. [61]CHEN X, HUANG Y, LI Y H, et al. Acidification of La loaded TiO2 for photocatalytic conversion of CO2[J]. Materials Letters, 2021, 293: 129709. [62]PRAKASH J, SAMRITI, KUMAR A, et al. Novel rare earth metal-doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications[J]. Materials Today Sustainability, 2021, 13: 100066. [63]MEZZAT F, ZAARI H, EI KENZ A E, et al. Effect of metal and non metal doping of TiO2 on photocatalytic activities: ab initio calculations[J]. Optical and Quantum Electronics, 2021, 53(2):86. [64]董元, 陈长城. 静电纺丝方法制备氮掺杂二氧化钛纳米纤维[J]. 西安邮电大学学报, 2018, 23(3): 87-91. DONG Yuan, CHEN Changcheng. Nitrogen-doped titaniun dioxide nanofibres fabricated by electrospinning[J]. Journal of Xi’an University of Posts and Telecommunications, 2018, 23(3): 87-91. [65]SEREDYCH M, JAGIELLO J, BANDOSZ T J. Complexity of CO2 adsorption on nanoporous sulfur-doped carbons: Is surface chemistry an important factor?[J]. Carbon, 2014, 74: 207-217. [66]OLOWOYO J O, KUMAR M, JAIN S L, et al. Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: Significance of sulfur doping[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17682-17695. |
[1] | 程玮, 张晶, 徐成书, 任燕. 羊毛角蛋白与PVA复合纤维膜的制备及其在医用口罩滤芯中的应用[J]. 现代纺织技术, 2023, 31(4): 74-83. |
[2] | 熊田田, 李丽君, 邹汉涛, 聂福山. 气喷-静电纺丝AgNWs-PVDF纳米纤维的制备及其性能[J]. 现代纺织技术, 2023, 31(3): 92-101. |
[3] | 杨海贞, 魏肃桀, 马闯, 周泽林, 王蒙佳, 付源. 纤维素静电纺丝及其衍生纳米纤维在生物医学中的应用研究进展[J]. 现代纺织技术, 2023, 31(3): 212-224. |
[4] | 葛烨倩, 徐佳琦, 曹 琪, 张霞霞, 王益峰, 许福军. TiO2纳米纤维的制备及其光催化降解染料性能[J]. 现代纺织技术, 2023, 31(2): 197-. |
[5] | 王灵晓, 徐桂龙, 唐敏, 梁云. 静电纺芳纶纳米纤维膜的制备及其过滤性能[J]. 现代纺织技术, 2023, 31(1): 136-144. |
[6] | 王占凯, 徐世龙, 杨世玉, 胡毅, 胡柳. 锌酞菁接枝纤维素纳米纤维膜的制备及其染料降解性能[J]. 现代纺织技术, 2023, 31(1): 204-212. |
[7] | 赵树颖, 张莹洁, 李彦, 王璐. 用于细菌生物膜感染治疗的纳米纤维的研究进展[J]. 现代纺织技术, 2023, 31(1): 248-258. |
[8] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 基于水浴静电纺的纳米纤维包芯纱连续制备与性能[J]. 现代纺织技术, 2022, 30(6): 80-87. |
[9] | 卫智毅, 王慧, 余天培, 程辉, 马信, 李守柱. 二氧化硅基纳米纤维气凝胶的研究进展[J]. 现代纺织技术, 2022, 30(6): 231-241. |
[10] | 李箫, 刘元军, 赵晓明. 静电纺丝纳米纤维基吸声材料的研究进展[J]. 现代纺织技术, 2022, 30(5): 246-258. |
[11] | 石敏, 王騊, 王晟. 快速油-水分离用PVDF/PDMS超疏水膜的一步法制备及性能[J]. 现代纺织技术, 2022, 30(4): 108-114. |
[12] | 韦悦, 王晟, 纪律律. 硫化镍复合碳纳米纤维的制备及其电催化析氢性能[J]. 现代纺织技术, 2022, 30(3): 81-88. |
[13] | 贾子奇, 王琛, 赵甜甜, 刘扬. 氮掺杂氧化石墨烯-TiO2/ PAN复合纳米纤维膜的制备及其光催化性能[J]. 现代纺织技术, 2022, 30(3): 97-107. |
[14] | 贾雪莹, 王騊. TiO2纳米棒复合织物的制备及其光催化和抗菌性能[J]. 现代纺织技术, 2022, 30(3): 136-142. |
[15] | 周荣鑫, 葛烨倩. 碳纳米纤维负极材料制备及其电化学性能[J]. 现代纺织技术, 2022, 30(1): 41-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||