[1]CHANG L, XING X L, ZHOU Y F, et al. Effects of EVA content on properties of PP/EVA blends and melt-blown nonwovens[J]. Fibers and Polymers, 2022, 23(4): 882-890.
[2]YU B, CAO Y M, SUN H, et al. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens[J]. Journal of Polymers and the Environment, 2017, 25(2): 510-517.
[3]NIM B, OPAPRAKASIT P. Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119684.
[4]刘成诚, 徐国平, 丁新波. PLA/黄麻多层混纤热压复合材料的制备及工艺优化[J]. 现代纺织技术, 2016, 24(3): 19-22.
LIU Chengcheng, XU Guoping, DING Xinbo. Preparation and process optimization of PLA/jute multilayer hot-pressed blended fiber composite material[J]. Advanced Textile Technology, 2016, 24(3): 19-22.
[5]QIU S, SUN J, LI H F, et al. A green way to simultaneously enhance the mechanical, flame retardant and anti-ultraviolet aging properties of polylactide composites by the incorporation of tannic acid derivatives[J]. Polymer Degradation and Stability, 2022, 196: 109831.
[6]YANG Y, ZHANG L S, XIONG Z, et al. Research progress in the heat resistance, toughening and filling modification of PLA[J]. Science China Chemistry, 2016, 59(11): 1355-1368.
[7]KAHRAMAN Y, GOKSU Y A, ÖZDEMIR B, et al. Composition design of PLA/TPU emulsion blends compatibilized with multifunctional epoxy-based chain extender to tackle high impact resistant ductile structures[J]. Journal of Applied Polymer Science, 2022, 139(12): 51833.
[8]SATHORNLUCK S, CHOOCHOTTIROS C. Modification of epoxidized natural rubber as a PLA toughening agent[J]. Journal of Applied Polymer Science, 2019, 136(48): 48267.
[9]董玉佳, 刘高慧, 陈谢宇,等. PEG增韧聚乳酸熔喷非织造材料的制备与性能[J]. 纺织高校基础科学学报, 2022, 35(1): 14-23.
DONG Yujia, LIU Gaohui, CHEN Xieyu, et al. Study on the preparation and properties of polyethylene glycol toughened polylactic acid melt-blown nonwovens[J]. Basic Sciences Journal of Textile Universities, 2022, 35(1): 14-23.
[10]章晶晶, 杨雯迪, 施冬健, 等. 聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备及性能研究[J]. 功能材料, 2020, 51(12): 12080-12087.
ZHANG Jingjing, YANG Wendi, SHI Dongjian, et al. Preparation and properties of polylactic acid/polylactic acid-grafted polydopamine composites[J]. Journal of Functional Materials, 2020,51(12): 12080-12087.
[11]GAO Y Q, PICOT O T, BILOTTI E, et al. Influence of filler size on the properties of poly (lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites[J]. European Polymer Journal, 2017, 86: 117-131.
[12]YANG F W, ZENG J H, LONG H B, et al. Micrometer copper-zinc alloy particles-reinforced wood plastic composites with high gloss and antibacterial properties for 3D printing[J]. Polymers, 2020, 12(3): 621.
[13]SUN H, PENG S W, WANG M J, et al. Preparation and characterization of magnetic PLA/Fe3O4-g-PLLA composite melt blown nonwoven fabric for air filtration[J]. Journal of Engineered Fibers and Fabrics, 2020, 15(12): 205-216.
[14]LUO D W, ZHEN W J, DONG C Y, et al. Performance and multi-scale investigation on the phase miscibility of poly(lactic acid)/amided silica nanocomposites[J]. International Journal of Biological Macromolecules, 2021, 177: 271-283.
[15]WANG W B, XU J X, WANG A Q. A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties[J]. Express Polymer Letters, 2011, 5(5): 385-400.
[16]GAO G H, LEI Y H, DONG L H, et al. Synthesis of nanocomposites of silver nanoparticles with medical stone and carbon nanotubes for their antibacterial applications[J]. Materials Express, 2012, 2(2): 85-93.
[17]穆金龙. 麦饭石/聚乳酸基纤维膜的制备及其过滤和抗菌性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2018: 42-47.
MU Jinlong. Preparation, Filtration and Antibacterial Properties of Medical Stone/PLLA Based Composite Fibrous Membranes[D]. Harbin: Harbin University of Science and Technology, 2018: 42-47.
[18]王宇. 丝素/麦饭石共混膜的制备与结构性能的研究[D]. 苏州: 苏州大学, 2014: 34-38.
WANG Yu. The Preparation and Structural Properties of Silk Fibroin and Maifan Stone[D]. Suzhou: Suzhou University, 2014: 34-38.
[19]WANG Q, WANG Z, AWASTHI M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297-304.
[20]崔巍巍, 穆金龙, 刘立柱, 等. 改性麦饭石/聚乳酸复合纤维薄膜的制备及其空气过滤性能研究[J]. 化工新型材料, 2018, 46(12): 233-237.
CUI Weiwei, MU Jinlong, LIU Lizhu, et al. Preparation and air filtration performance of modified medical stone/polylactic acid membrane[J]. New Chemical Materials, 2018, 46(12): 233-237.
[21]FORTUNATI E, ARMENTANO I, ZHOU Q, et al. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose[J]. Polymer Degradation and Stability, 2012, 97(10): 2027-2036.
[22]LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820-852.
[23]PAN P J, KAI W H, ZHU B, et al. Polymorphous crystallization and multiple melting behavior of poly(l-lactide):Molecular weight dependence[J]. Macromolecules, 2007, 40(19): 6898-6905
[24]孟季茹, 梁国正, 赵磊, 等. 聚丙烯增韧改性研究的最新进展[J]. 塑料科技, 2000, 28(1): 41-49.
MENG Jiru, LIANG Guozheng, ZHAO Lei, et al. The latest development of study on toughening polypropylene[J]. Plastics Science and Technology, 2000, 28(1): 41-49.
[25]KURAUCHI T, OHTA T. Energy absorption in blends of polycarbonate with ABS and SAN[J]. Journal of Materials Science, 1984, 19(5): 1699-1709.
|