[1] MALEK A S, ELNAHRAWY A, ANWAR H, et al. From fabric to smart T-shirt: Fine tuning an improved robust system to detect arrhythmia[J]. Textile Research Journal, 2022, 92(17/18): 3204-3220.
[2] AWAIS M, KRZYWINSKI S, WENDT E. A novel modeling and simulation approach for the prediction of human thermophysiological comfort[J]. Textile Research Journal, 2021, 91(5/6): 691-705.
[3] KıRCı F, KARAMANLARGIL E, DURU S C, et al. Comfort properties of medical compression stockings from biodesigned and cotton fibers[J]. Fibers and Polymers, 2021, 22(10): 2929-2936.
[4] CAMILLIERI B, BUENO M A, FABRE M, et al. From finger friction and induced vibrations to brain activation: Tactile comparison between real and virtual textile fabrics[J]. Tribology International, 2018, 126: 283-296.
[5] TANG W, ZHANG M M, CHEN G F, et al. Investigation of tactile perception evoked by ridged texture using ERP and non-linear methods[J].Frontiers in Neuroscience, 2021, 15: 676837.
[6] 苑洁. 基于fMRI的织物接触压力舒适性脑感知表征[D]. 上海: 东华大学, 2019: 78-79.
YUAN Jie. Brain Perception Representation of Fabric Contact Pressure Comfort Based on fMRI[D].Shanghai: Donghua University, 2019: 107-116.
[7] LIU Y J, CHEN D S. An analysis on EEG power spectrum under pressure of girdle[J]. International Journal of Clothing Science and Technology, 2015, 27(4): 495-505.
[8] 尹玲. 基于心率变异和脑波分析的塑身腹带着装压力舒适性研究[D]. 上海: 东华大学, 2012: 107-116.
YIN Ling. Study on Pressure Comfort of Body Shaping Abdominal Band Based on HRV and EEG Analysis[D].Shanghai: Donghua University, 2012: 107-116.
[9] 夏羽. 基于神经电生理学的丝织物触感评价和认知研究[D]. 苏州: 苏州大学, 2017: 28-32.
XIA Yu. Research on Tactile Evaluation of Silk Fabrics Based on Neural Electrophysiology[D]. Suzhou: Soochow University, 2017: 28-32.
[10] TANG W, LIU R, SHI Y B, et al. From finger friction to brain activation: Tactile perception of the roughness of gratings[J]. Journal of Advanced Research, 2020, 21: 129-139.
[11] 唐玮, 张梅梅, 刘瑞, 等. 不同尖锐度纹理形状的摩擦触觉感知与表征研究[J]. 摩擦学学报, 2021, 41(3): 373-381.
TANG Wei, ZHANG Meimei, LIU Rui, et al. Friction tactile perception and representation of texture shapes with different sharpness[J]. Tribology, 2021, 41(3): 373-381.
[12] TANG W, LU X Y, CHEN S, et al. Tactile perception of skin: Research on late positive component of event-related potentials evoked by friction[J]. The Journal of the Textile Institute, 2020, 111(5): 623-629.
[13] 刘陶峰, 李一员, 李炜, 等. 确定性纹理表面特征高度对皮肤摩擦感知的影响[J]. 西南交通大学学报, 2020, 55(2): 372-378.
LIU Taofeng, LI Yiyuan, LI Wei, et al. Effect of deterministic texture surface feature height on skin friction perception[J]. Journal of Southwest Jiaotong University, 2020,55 (2): 372-378.
[14] LIU Y J, CHEN D S. The influence of clothing pressure exerted by girdle on inhibition ability of young females[J]. International Journal of Clothing Science and Technology, 2016, 28(5): 712-722.
[15] 陈雁, 李栋高. 服装颜色的感觉生理研究[J]. 纺织学报, 2004, 25(3): 68-69.
CHEN Yan, LI Donggao. Study on sensory physiology of clothing color[J]. Journal of textile, 2004, 25(3): 68-69.
[16] STYLIOS G K, CHEN M X. The concept of psychotextiles; interactions between changing patterns and the human visual brain, by a novel composite SMART fabric[J]. Materials, 2020, 13(3): 725.
[17] 莫换平. 纺织品冷暖色搭配视觉认知研究[D].苏州: 苏州大学, 2020: 28-46.
MO Huanping. Study on the Visual Cognition of Textile Cold and Warm Color Matching[D]. Suzhou: Soochow University, 2020: 28-46.
[18] DING M, SONG M J, PEI H N, et al. The emotional design of product color: An eye movement and event-related potentials study[J]. Color Research & Application, 2021, 46(4): 871-889.
[19] OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24): 9868-9872.
[20] FOX P T, RAICHLE M E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(4): 1140-1144.
[21] PAULING L, CORYELL C D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1936, 22(4): 210-216.
[22] BUXTON R B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
[23] FRISTON K J, Ashburner J, Kiebel S, et al. Statistical Parametric Mapping: the Analysis of Functional Brain Images[M]. Amsterdam: Elsevier/Academic Press, 2007.
[24] ASHBURNER J. A fast diffeomorphic image registration algorithm[J]. Neuroimage, 2007, 38(1): 95-113.
[25] Poldrack R A, Mumford J A, Nichols T E. Handbook of Functional MRI Data Analysis[M]. Cambridge: Cambridge University Press, 2011.
[26] YUAN J, YU W D, WANG Q C, et al. A potential brain zone perceiving a comfortable fabric pressure touch[J]. Textile Research Journal, 2019, 89(17): 3499-3505.
[27] WANG Q C, TAO Y, ZHANG Z W, et al. Representations of fabric hand attributes in the cerebral cortices based on the Automated Anatomical Labeling atlas[J]. Textile Research Journal, 2019, 89(18): 3768-3778.
[28] WANG Q C, TAO Y, YUAN J, et al. Application of brodmann′s area maps for cortical localization of tactile perception evoked by fabric touch[J]. Fibers and Polymers, 2019, 20(4): 876-885.
[29] 苑洁, 娄琳, 王其才. 织物触觉舒适度大脑感知技术研究进展[J]. 纺织学报, 2022, 43(9): 211-217. YUAN Jie, LOU Lin, WANG Qicai. Research progress of brain perception technology for tactile comfort of fabric [J]. Journal of textile, 2022, 43(9): 211-217.
[30] YEON J, KIM J, RYU J, et al. Human brain activity related to the tactile perception of stickiness[J]. Frontiers in Human Neuroscience, 2017, 11: 8.
[31] 苑洁, 于伟东, 陈克敏. 基于功能磁共振的织物触压舒适度脑感知研究进展[J]. 纺织学报, 2017, 38(10): 146-152.
YUAN Jie, YU Weidong, CHEN Kemin. Research progress of brain perception of fabric touch comfort based on functional magnetic resonance[J]. Journal of textile, 2017, 38(10): 146-152.
[32] GAREY L. Brodmann's ‘localisation in the cerebral cortex’[J]. The Journal of Anatomy, 2000, 196(3): 493-496.
[33] YUAN J, XU C L, WANG Q C, et al. Brain signal changes of sensory cortex according to surface roughness of boneless corsets[J]. Textile Research Journal, 2020, 90(1): 76-90.
[34] GURTUBAY ANTOLIN A, LEON CABRERA P, RODRIGUEZ FORNELLS A. Neural evidence of hierarchical cognitive control during haptic processing: An fMRI study[J]. eNeuro, 2018, 5(6): 295-318.
[35] RAJAEI N, AOKI N, TAKAHASHI H K, et al. Brain networks underlying conscious tactile perception of textures as revealed using the velvet hand illusion[J]. Human Brain Mapping, 2018, 39(12): 4787-4801.
[36] SO Y, KIM S P, KIM J. Perception of surface stickiness in different sensory modalities: an functional MRI study[J]. Neuroreport, 2020, 31(5): 411-415.
[37] WANG Q, YU W, HE N, et al. Investigation of the cortical activation by touching fabric actively using fingers[J]. Skin Research and Technology, 2015, 21(4): 444-448.
[38] WANG Q C, YU W D, CHEN K M, et al. Brain cognitive comparison of fabric touch on human glabrous and hairy skin[J]. Textile Research Journal, 2016, 86(3): 318-324.
[39] WANG Q, YU W, CHEN K, et al. Brain discriminative cognition on the perception of touching different fabric using fingers actively[J]. Skin Research and Technology, 2016, 22(1): 63-68.
[40] KITADA R, DOIZAKI R, KWON J, et al. Brain networks underlying tactile softness perception: a functional magnetic resonance imaging study[J]. NeuroImage, 2019, 197: 156-166.
[41] WANG Q C, TAO Y, SUN T, et al. Analysis of brain functional response to cutaneous prickling stimulation by single fiber[J]. Skin Research and Technology, 2021, 27(4): 494-500.
[42] YUAN J, YU W D, CHEN K M, et al. A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure[J]. Textile Research Journal, 2019, 89(16): 3312-3325.
[43] 童新宇,吴新丽,李思儒,等.人手指振动触觉感知的短时记忆特性[J].生理学报,2020,72(5):643-650.
TONG Xinyu, WU Xinli, Li Siru, et al. Short-term memory characteristics of tactile perception of human finger vibration [J]. Acta Physiologica Sinica, 2020 and 72 (5): 643-650.
[44] ZHANG J, TAO H, JIANG X W. Cognitive Behavior Difference Based on Sensory Analysis in Tactile Evaluation of Fabrics[M]. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2019: 430-437.
[45] CHUNG Y G, HAN S W, KIM H S, et al. Adaptation of cortical activity to sustained pressure stimulation on the fingertip[J]. BMC Neuroscience, 2015, 16: 71.
[46] OISHI Y, IMAMURA T, SHIMOMURA T, et al. Visual texture agnosia in dementia with Lewy bodies and Alzheimer's disease[J]. Cortex, 2018, 103: 277-290.
[47] CANT J S, XU Y D. The contribution of object shape and surface properties to object ensemble representation in anterior-medial ventral visual cortex[J]. Journal of Cognitive Neuroscience, 2017, 29(2): 398-412.
[48] LACEY S, SATHIAN K. Visuo-haptic multisensory object recognition, categorization, and representation[J]. Frontiers in Psychology, 2014, 5: 730.
[49] SUZUKI K. Visual texture agnosia in humans[J]. Brain and Nerve= Shinkei Kenkyu No Shinpo, 2015, 67(6): 701-709.
[50] JACOBS R H A H, BAUMGARTNER E, GEGENFURTNER K R. The representation of material categories in the brain[J]. Frontiers in Psychology, 2014, 5: 146.
[51] ALVAREZ G A, CAVANAGH P. The capacity of visual short-term memory is set both by visual information load and by number of objects[J]. Psychological science, 2004, 15(2): 106-111.
[52] HARRISON A, JOLICOEUR P, MAROIS R. “What” and “where” in the intraparietal sulcus: an fMRI study of object identity and location in visual short-term memory[J]. Cerebral Cortex, 2010, 20(10): 2478-2485.
[53] SHEREMATA S L, BETTENCOURT K C, SOMERS D C. Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2010, 30(38): 12581-12588.
[54] XU Y D, CHUN M M. Dissociable neural mechanisms supporting visual short-term memory for objects[J]. Nature, 2006, 440(7080): 91-95.
[55] OTSUKA S , SAIKI J. Neural correlates of visual short-term memory for objects with material categories[J]. Heliyon, 2019, 5(12): e03032.
[56] LI C L, KOVáCS G, TRAPP S. Visual short-term memory load modulates repetition related fMRI signal adaptation[J]. Biological Psychology, 2021, 166: 108199.
[57] KOMATSU H, GODA N. Neural mechanisms of material perception: Quest on shitsukan[J]. Neuroscience, 2018, 392: 329-347.
[58] ECK J, KAAS A L, MULDERS J L, et al. The effect of task instruction on haptic texture processing: the neural underpinning of roughness and spatial density perception[J]. Cerebral Cortex, 2016, 26(1): 384-401.
[59] GALLIVAN J P, CANT J S, GOODALE M A, et al. Representation of object weight in human ventral visual cortex[J]. Current Biology, 2014, 24(16): 1866-1873.
[60] NEWMAN S D, KLATZKY R L, LEDERMAN S J, et al. Imagining material versus geometric properties of objects: An fMRI study[J]. Cognitive Brain Research, 2005, 23(2/3): 235-246.
[61] KIM Y, USUI N, MIYAZAKI A, et al. Cortical regions encoding hardness perception modulated by visual information identified by functional magnetic resonance imaging with multivoxel pattern analysis[J]. Frontiers in Systems Neuroscience, 2019, 13: 52.
[62] XIAO B, BI W Y, JIA X D, et al. Can you see what you feel? Color and folding properties affect visual-tactile material discrimination of fabrics[J]. Journal of Vision, 2016, 16(3): 34.
[63] WEISSER V, STILLA R, PELTIER S, et al. Short-term visual deprivation alters neural processing of tactile form[J]. Experimental Brain Research, 2005, 166(3): 572-582.
[64] O CALLAGHAN G, O DOWD A, SIMõES-FRANKLIN C, et al. Tactile-to-visual cross-modal transfer of texture categorisation following training: An fMRI study[J]. Frontiers in Integrative Neuroscience, 2018, 12: 24.
[65] ONO M, HIROSE N, MORI S J. Tactile information affects alternating visual percepts during binocular rivalry using naturalistic objects[J]. Cognitive Research: Principles and Implications, 2022, 7(1): 40.
[66] LUNGHI C, MORRONE M C. Early interaction between vision and touch during binocular rivalry[J]. Multisensory Research, 2013, 26(3): 291-306.
[67] ISAMI C, YAMAMOTO H, SUKIGARA S. Visio-haptic cross-modal recognition for fabrics[J]. Journal of Textile Engineering, 2020, 66(1): 1-6.
[68] GUIDALI G, PISONI A, BOLOGNINI N, et al. Keeping order in the brain: the supramarginal gyrus and serial order in short-term memory[J]. Cortex, 2019, 119: 89-99.
[69] MUNOZ-MONTOYA F, JUAN M C, MENDEZ-LOPEZ M, et al. Augmented reality based on SLAM to assess spatial short-term memory[J]. IEEE Access, 2018, 7: 2453-2466.
[70] DEHGHAN NAYYERI M, BURGMER M, PFLEIDERER B. Impact of pressure as a tactile stimulus on working memory in healthy participants[J]. PLoS One, 2019, 14(3): e0213070.
|