[1] ZHENG S H, WANG H, DAS P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all‐flexible self‐powered integrated systems[J]. Advanced Materials, 2021, 33(10): e2005449.
[2] SALAUDDIN M, RANA S M S, SHARIFUZZAMAN M, et al. A novel MXene/ecoflex nanocomposite‐coated fabric as a highly negative and stable friction layer for high‐output triboelectric nanogenerators[J]. Advanced Energy Materials, 2021, 11(1): 2002832.
[3] MI X N, LI H, TAN R, et al. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic[J]. Biosensors and Bioelectronics, 2021, 192: 113482.
[4] JIA C J, ZHU Y S, SUN F X, et al. A flexible and stretchable self-powered nanogenerator in basketball passing technology monitoring[J]. Electronics, 2021, 10(21): 2584.
[5] MAURYA D, KHALEGHIAN S, SRIRAMDAS R, et al. 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles[J]. Nature Communications, 2020, 11: 5392.
[6] LI Y, TIAN X, GAO S P, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication[J]. Advanced Functional Materials, 2020, 30(5): 1907451.
[7] LIU Z K, ZHU T X, WANG J R, et al. Functionalized fiber-based strain sensors: Pathway to next-generation wearable electronics[J]. Nano-Micro Letters, 2022, 14(1): 61.
[8] LI C, CONG S, TIAN Z N, et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors[J]. Nano Energy, 2019, 60: 247-256.
[9] QIU A D, LI P L, YANG Z K, et al. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors[J]. Advanced Functional Materials, 2019, 29(17): 1806306.
[10] LIU Y Q, HE K, CHEN G, et al. Nature-inspired structural materials for flexible electronic devices[J]. Chemical Reviews, 2017, 117(20): 12893-12941.
[11] ZHOU Z H, PANATDASIRISUK W, MATHIS T S, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage[J]. Nanoscale, 2018, 10(13): 6005-6013.
[12] JIA Z X, LI Z J, MA S F, et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor[J]. Journal of Colloid and Interface Science, 2021, 584: 1-10.
[13] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1): 269-277.
[14] GUO Y, ZHANG D Y, YANG Y, et al. MXene-encapsulated hollow Fe3O4 nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries[J]. Nanoscale, 2021, 13(8): 4624-4633.
[15] ZHANG X, ZHANG Z H, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85.
[16] ZHU X Y, LIN L, WU R M, et al. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode[J]. Biosensors and Bioelectronics, 2021, 179: 113062.
[17] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140.
[18] CHERTOPALOV S, MOCHALIN V N. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films[J]. ACS Nano, 2018, 12(6): 6109-6116.
[19] LI N, JIANG Y, ZHOU C H, et al. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38116-38125.
[20] CHIA H L, MAYORGA-MARTINEZ C C, ANTONATOS N, et al. MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance[J]. Analytical Chemistry, 2020, 92(3): 2452-2459.
[21] JIAN M Q, XIA K L, WANG Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials, 2017, 27(9): 1606066.
[22] SANG Z, KE K, MANAS‐ZLOCZOWER I. Design strategy for porous composites aimed at pressure sensor application[J]. Small, 2019, 15(45): e1903487.
[23] YANG K, YIN F X, XIA D, et al. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range[J]. Nanoscale, 2019, 11(20): 9949-9957.
[24] 唐培朵, 戴俊, 韦凌志, 等. 丝素蛋白纳米纤维静电纺制备的研究[J]. 生物化工, 2018, 4(4): 118-120, 128.
TANG Peiduo, DAI Jun, WEI Lingzhi, et al. Research progress of the electrospinning preparation of silk fibroin nanofibers[J]. Biological Chemical Engineering, 2018, 2018, 4(4): 118-120, 128.
[25] ZHANG H R, ZHAO J T, XING T L, et al. Fabrication of silk fibroin/graphene film with high electrical conductivity and humidity sensitivity[J]. Polymers, 2019, 11(11): 1774.
[26] 严国荣, 廖喜林, 刘让同, 等. 静电纺丝纳米纤维的应用研究进展[J]. 上海纺织科技, 2018, 46(5): 1-6.
YAN Guorong, LIAO Xilin, LIU Rangtong, et al. Advances in application of electorstatic spinning nanofibers[J]. Shanghai Textile Science, 2018, 46(5): 1-6.
[27] 袁文凤, 王军凯, 夏启勋, 等. Ti3C2 MXene柔性应力/应变传感器的制备及应用研究进展[J]. 硅酸盐学报, 2022, 50(5): 1447-1454.
YUAN Wenfeng, WANG Junkai, XIA Qixun, et al. Research progress on preparation and application of flexible stress/strain sensors based on two-dimensional Ti3C2 MXene[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1447-1454.
[28] SHARMA S, CHHETRY A, KO S, et al. Highly sensitive and stable pressure sensor based on polymer-mxene composite nanofiber mat for wearable health monitoring[C]//33rd International Conference on Micro Electro Mechanical Systems (MEMS). Vancouver, BC, Canada. IEEE, 2020: 810-813.
[29] 王子婧. MXene的表面改性及气体传感特性研究[D]. 西安: 陕西科技大学, 2021.
WANG Zijing. Study on Surface Modification and Gas Sensing Characteristics of MXene[D]. Xi’an: Shanxi University of Science and Technology, 2021.
[30] LIANG X Y, REN X F, YANG Q Y, et al. A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale, 2021, 13(5): 2843-2848.
[31] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.
[32] 周晓伟. Ti3C2Tx的制备表征及其SERS应用研究[D]. 天津: 天津大学, 2018.
ZHOU Xiaowei. The Synthesis, Characterization of Ti3C2Tx and Applying on Sers Study[D]. Tianjin: Tianjin University, 2018.
[33] XUE Q, ZHANG H J, ZHU M S, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847.
[34] LUO J M, TAO X Y, ZHANG J, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano, 2016, 10(2): 2491-2499.
[35] 田申. 二维Ti3C2Tx材料的制备、改性及其对TPU松弛行为的影响研究[D]. 淮南: 安徽理工大学, 2021.
TIAN Shen. Study on the Preparation and Modification of 2D Ti3C2Tx Material and Its Effect on TPU Relaxation Behavior[D]. Huai’nan: Anhui University of Science and Technology, 2021.
[36] 时志强, 吕国霞. 二维层状材料Ti3C2Tx的制备及其电化学储钠性能[J]. 天津工业大学学报, 2018, 37(6): 48-54.
SHI Zhiqiang, LÜ Guoxia. Preparation and performance of electrochemical sodium storage of two-dimension Ti3C2Tx material[J]. Journal of Tianjin Polytechnic University, 2018, 37(6): 48-54.
[37] RIAZI H, NEMANI S K, GRADY M C, et al. Ti3C2 MXene-polymer nanocomposites and their applications[J]. Journal of Materials Chemistry A, 2021, 9(13): 8051-8098.
[38] 李萌. Ti3C2Tx修饰的纸基/织物基电化学汗液传感器[D]. 上海: 东华大学, 2021.
LI Meng. Ti3C2Tx Modified Paper/Fabric Based Electrochemical Sweat Sensors[D]. Shanghai: Donghua University, 2021.
[39] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015, 36(11): 6-11, 19.
WANG Xiaoliang, FENG Xuewei PAN Zhijuan. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015, 36(11): 6-11, 19.
[40] LI Y, ZHU J D, CHENG H, et al. Developments of advanced electrospinning techniques: A critical review[J]. Advanced Materials Technologies, 2021, 6(11): 2100410.
[41] 熊艳娜. 高强度丝素蛋白膜的制备[D]. 青岛: 青岛科技大学, 2016.
XIONG Yanna. The Preparetion of High-strength Silk Fibroin Film[D]. Qingdao: Qingdao University of Science and Technology, 2016.
[42] 梁晴晴. 光照对丝素蛋白溶解及成膜性能的探究[D]. 青岛: 青岛科技大学, 2018.
LIANG Qingqing. Light Irradiation on the Dissolution of Silk Fibroin and Its Film Formation Prorerties[D]. Qingdao: Qingdao University of Science and Technology, 2018
[43] 蒋幸子. 丝素蛋白基复合水凝胶的制备及其药物释放研究[D]. 合肥: 安徽大学, 2021.
JIANG Xinzi. Preparation of Silk Fibroin Based Composite Hydrogels and Its Drug Release Behaviors[D]. Hefei: Anhui University, 2021.
|