[1] GHOLIZADEH A, VOIRY D, WEISEL C,et al. Toward point-of-care management of chronic respiratory conditions: Electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide[J]. Microsystems & Nanoengineering, 2017, 3(1): 1-8.
[2] 刘瑞清, 邵小东, 王金芝, 等. 碳纳米管负载的金纳米颗粒修饰有机电化学晶体管传感器及其对多巴胺的检测[J]. 微纳电子技术, 2022, 59(9): 891-898,965.
LIU Ruiqing, SHAO Xiaodong, WANG Jinzhi, et al. Carbon nanotube-supported gold nanoparticle-modified organic electrochemical transistor-based sensor and its detection of dopamine[J]. Micronanoelectronic Technology, 2022, 59 (9): 891-898,965.
[3] 冯晓倩, 顾文, 张霞, 等. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33 (7): 1243-1250.
FENG Xiaoqian, GU Wen, ZHANG Xia, et al. Advances in biosensors based on organic thin film transistors and organic electrochemical transistors[J]. Materials Reports, 2019, 33 (7): 1243-1250.
[4] KHODAGHOLY D, GELINAS J N, THESEN T, et al. NeuroGrid: Recording action potentials from the surface of the brain[J]. Nature Neuroscience, 2015, 18(2): 310-315.
[5] 李芒芒, 王磊, 桑胜波, 等. 交流电沉积制备PEDOT∶PSS有机电化学晶体管[J]. 微纳电子技术, 2019, 56(7): 515-521.
LI Mangmang, WANG Lei, SANG Shengbo, et al. Preparation of PEDOT: PSS organic electrochemical transistors by the AC electrodeposition[J]. Micronanoelectronic Technology, 2019, 56 (7): 515-521.
[6] 王垚, 王跃丹, 朱如枫, 等. 纤维基有机电化学晶体管研究进展[J]. 现代纺织技术, 2020, 28 (5) : 21-33.
WANG Yao, WANG Yuedan, ZHU Rufeng, et al. Research advances of fiber-based organic electrochemical transistors[J]. Advanced Textile Technology, 2020, 28 (5): 21-33.
[7] ZHANG S M, CICOIRA F. Water-enabled healing of conducting polymer films[J]. Advanced Materials, 2017, 29(40): 1703098.
[8] 贾晗钰, 邹晓兰, 孙晴晴, 等. 全印刷制备有机薄膜晶体管:进展与挑战[J]. 中国材料进展, 2021, 40(12) : 982-995.
JIA Hanyu, ZOU Xiaolan, SUN Qingqing, et al. Fully printed organic thin-film transistors: Progress and challenges[J]. Materials China, 2021, 40 (12) : 982-995.
[9] TILFORD R W, MUGAVERO S J 3rd, PELLECHIA P J,et al. Tailoring microporosity in covalent organic frameworks[J]. Advanced Materials, 2008, 20 (14): 2741-2746.
[10] QIAN H L, YANG C X, YAN X P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation[J]. Nature Communications, 2016, 7(1): 1-7
[11] FANG Q R, WANG J H, GU S,et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. Journal of the American Chemical Society, 2015, 137(26): 8352-8355.
[12] SUN J H, KLECHIKOV A, MOISE C,et al. A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage[J]. Angewandte Chemie (International Ed in English), 2018, 57 (4): 1034-1038.
[13] LIN S, DIERCKS C S, ZHANG Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015, 349(6253): 1208-1213.
[14] Dalapati S, Jin S B, Gao J,et al. An azine-linked covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(46): 17310-17313.
[15] WAN S, GUO J, KIM J,et al. A belt-shaped, blue luminescent, and semiconducting covalent organic framework[J]. Angewandte Chemie(International Ed in English), 2008, 47 (46): 8826-8830.
[16] FANG Q R, ZHUANG Z B, GU S,et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5(1): 1-8.
[17] DIERCKS C, YAGHI O. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355 (6328): 11585.
[18] ZHANG F, WEI S C, WEI W W,et al. Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers[J]. Science Bulletin, 2020, 65(19): 1659-1666.
[19] LYU H, DIERCKS C S, ZHU C H,et al. Porous crystalline olefin-linked covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141 (17): 6848-6852.
[20] HONG K, KIM S H, LEE K H,et al. Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic[J]. Advanced Materials, 2013, 25 (25): 3413-3418.
[21] BERNARDS D A, MALLIARAS G G. Steady-state and transient behavior of organic electrochemical transistors[J]. Advanced Functional Materials, 2007, 17(17): 3538-3544.
[22] UESUGI E, NISHIYAMA S, AKIYOSHI H, et al. 1D and 2D Bi compounds in field-effect transistors[J]. Advanced Electronic Materials, 2015, 1 (8): 1500085.
|