现代纺织技术 ›› 2023, Vol. 31 ›› Issue (6): 267-276.
• • 上一篇
出版日期:
2023-11-10
网络出版日期:
2023-11-17
作者简介:
何泓贝(2000—),男,成都人,硕士研究生,主要从事太阳能水热蒸发方面的研究。
基金资助:
Published:
2023-11-10
Online:
2023-11-17
摘要: 随着淡水资源短缺的问题日益加剧,太阳能热脱盐技术受到越来越多研究者的关注。太阳能水热蒸发相比其他海水淡化方式具有成本低、污染小等特点,获得高效光热蒸发效率的关键在于如何更好地将收集的太阳能转换为热能并减少热量损失。此外,若要维持蒸发器的蒸发速率并延长使用寿命,需要其具备优异的耐盐性能。织物具有的疏松多孔结构可以实现高效的水运输,优异的柔韧性和弹性能与蒸发器更好地兼容。文章综述了织物基太阳能蒸发器的优势,光热原理,不同光热材料的光热效果以及提高耐盐性和蒸发速率的方法。最后对太阳能蒸发器的未来发展和应用方向进行了展望。
中图分类号:
何泓贝, 朱清楷, 任海涛. 织物基太阳能蒸发器的研究进展[J]. 现代纺织技术, 2023, 31(6): 267-276.
HE Hongbei, ZHU Qingkai, REN Haitao. Research progress on fabric-based solar evaporators[J]. Advanced Textile Technology, 2023, 31(6): 267-276.
[1]陈振宇,张倍源,席聪霞,等.基于多元线性回归分析的水资源供需问题研究[J].新型工业化,2021,11(6):27-28,35. CHEN Zhengyu, ZHANG Beiyuan, XI Congxia, et al. Research on the Supply and Demand of Water Resources Based on Multiple Linear Regression Analysis[J]. The Journal of New Industrialization, 2021,11(6):27-28,35. [2]LIU J, CHEN S, WANG H, et al. Calculation of carbon footprints for water diversion and desalination projects[J]. Energy Procedia, 2015, 75: 2483-2494. [3]BIANCHELLI S, MARTIRE M L, POLA L, et al. Impact of hypersaline brines on benthic meio-and macrofaunal assemblages: A comparison from two desalination plants of the Mediterranean Sea[J]. Desalination, 2022, 532: 115756. [4]KAMAL A, Al-GHAMDI S G, KOÇ M. Assessing the impact of water efficiency policies on Qatar′s electricity and water sectors[J]. Energies, 2021, 14(14): 4348. [5]SALEH L, MEZHER T. Techno-economic analysis of sustainability and externality costs of water desalination production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111465. [6]徐政涛,谢应明,孙嘉颖,等.水合物法海水淡化技术研究进展及展望[J].热能动力工程,2020,35(7):1-11. XU Zhengtao, XIE Yingming, SUN Jiaying, et al. Research progress and prospect of hydrate based desalination technology[J]. Journal of Engineering for Thermal Energy and Power, 2020,35(7):1-11. [7]LIU Y, WANG J, WANG L. An energy-saving ′′nanofiltration/electrodialysis with polarity reversal (NF/EDR)′′ integrated membrane process for seawater desalination. Part III. Optimization of the energy consumption in a demonstration operation[J]. Desalination, 2019, 452: 230-237. [8]PANG Y, ZHANG J, MA R, et al. Solar–thermal water evaporation: a review[J]. ACS Energy Letters, 2020, 5(2): 437-456. [9]BAI Z, XU H, YANG B, et al. Fe3O4/diatomite-decorated cotton evaporator for continuous solar steam generation and water treatment[J]. Materials, 2022, 15(17): 6110. [10]ZAHMATKESH B B, NIAZMAND H, GOHARSHADI E K. Synergistic effect of Fe3O4 nanoparticles and Au nanolayer in enhancement of interfacial solar steam generation[J]. Materials Research Bulletin, 2023, 162: 112178. [11]王诚,董欣欣,张华,等.光热-光催化双功能Au@Cu2O二元异质结的制备及其对水的清洁处理[J/OL].现代纺织技术:1-9[2023-05-30].http://kns.cnki.net/kcms/detail/33.1249.TS.20230509.1652.004.html WANG Cheng, DONG Xinxin, ZHANG Hua, et al. Preparation of bifunctional Au@Cu2O binary heterojunctions with photothermal effect and photocatalysis for clean water generation[J/OL]. Advanced Textile Technology:1-9[2023-05-30].http://kns.cnki.net/kcms/detail/33.1249.TS.20230509.1652.004.html [12]KUZMENKOV D M, STRUCHALIN P G, OLKHOVSKII A V, et al. Solar-driven desalination using nanoparticles[J]. Energies, 2021, 14(18): 5743. [13]ULSET E T, KOSINSKI P, BALAKIN B V. Solar steam in an aqueous carbon black nanofluid[J]. Applied Thermal Engineering, 2018, 137: 62-65. [14]SCHIFFBAUER J, LUO T. Liquid phase stabilization versus bubble formation at a nanoscale curved interface[J]. Physical Review E, 2018, 97(3): 033106. [15]HOGAN N J, URBAN A S, AYALA-OROZCO C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014, 14(8): 4640-4645. [16]NI G, MILJKOVIC N, GHASEMI H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy, 2015, 17: 290-301. [17]SUN S, SUN B, WANG Y, et al. Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification[J]. Separation and Purification Technology, 2021, 278: 119621. [18]LI Z, LEI H, MU Z, et al. Reduced graphene oxide composite fiber for solar-driven evaporation and seawater desalination[J]. Renewable Energy, 2022, 191: 932-942. [19]LEI Z, SUN X, ZHU S, et al. Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2021, 14(1): 1-16. [20]GUO Y, ZHOU X, ZHAO F, et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination[J]. ACS Nano, 2019, 13(7): 7913-7919 [21]LEI W, LIU Y, KHAN S, et al. Synergistically regulated surface structure and water transportation of sponge hydrogel evaporator for efficient water desalination[J]. Desalination, 2022, 533:115780. [22]AQIANG C, MENG Y, HONGDA Y, et al. Sustainable self-cleaning evaporators for highly efficient solar desalination using a highly elastic sponge-like hydrogel.[J]. ACS Applied Materials & Interfaces,2022. 14(31): 36116-36131. [23]TU C, CAI W, CHEN X, et al. A 3D-structured sustainable solar-driven steam generator using super‐black nylon flocking materials[J]. Small, 2019, 15(37): 1902070. [24]LEI Z, ZHU S, SUN X, ET AL. A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination[J]. Advanced Functional Materials, 2022, 32(40): 2205790. [25]LIU Z, WU B, ZHU B, ET AL. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Advanced Functional Materials, 2019, 29(43): 1905485. [26]HE N, YANG Y, WANG H, et al. Ion-transfer engineering via Janus hydrogels enables ultrahigh performance and salt-resistant solar desalination[J]. Advanced Materials, 2023: 35(24): 2300189. [27]CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718. [28]LIU C X, HUANG J F, HSIUNG C E, et al. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles[J]. Advanced Sustainable Systems, 2017, 1(1/2): 1600013. [29]LIU F, LIANG W, HE J, et al. Fabrication of Ag nanoparticles doped hypercrosslinked polymers monoliths for solar desalination[J]. Polymer, 2021, 231: 124115. [30]GU Y, LI X, LI X, et al. Facile preparation of Cu2S/Cu mesh for high-performance solar water evaporation[J]. ChemistrySelect, 2021, 6(31): 7901-7905. [31]GUO X, WANG H, GAO H, et al. Thermal performance of hydrophobic α-Al2O3 ceramic membrane for solar-thermal membrane coupling water desalination process[J]. Solar Energy, 2022, 231: 27-40. [32]WANG Q, JIA F, HUANG A, et al. MoS2@ sponge with double layer structure for high-efficiency solar desalination[J]. Desalination, 2020, 481: 114359. [33]SONG C, WANG L, LI X, et al. A Chitin/CuS composite film for efficient solar seawater desalination[J]. Inorganic Chemistry Communications, 2021, 133: 108886. [34]LI W, CHEN Y, YAO L, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation[J]. Desalination, 2020, 478: 114288. [35]WANG T, HUANG H, LI H, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials, 2021, 36(4): 683-701. [36]MU S, NAN J, SHI C, et al. A flexible polymer nanofiber-gold nanoparticle composite film for solar-thermal seawater desalination[J]. Macromolecular Rapid Communications, 2020, 41(24): 2000390. [37]ZHOU X, ZHAO F, GUO Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-1992. [38]KAREN W M J, WANG Z, LIEW W Y H, et al. Low-cost and sustainable carbonized sawdust based solar absorber for solar vapor generation towards seawater desalination[J]. Waste and Biomass Valorization, 2023: 1-10. [39]FENG X, ZHAO J, SUN D, et al. Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination[J]. Journal of Materials Chemistry A, 2019, 7(9): 4400-4407. [40]XIAO W, YAN J, GAO S, et al. Superhydrophobic MXene based fabric composite for high efficiency solar desalination[J]. Desalination, 2022, 524: 115475. [41]毛钦清,张丽莎.多功能光热材料在海水淡化中研究进展与应用[J].广东化工,2022,49(19):86-87,97. MAO Qinqing, ZHANG Lisha. Research progress and application of multifunctional photothermal materials in seawater desalination[J]. Guangdong Chemical Industry, 2022, 49(19): 86-87, 97. [42]ZHU B, KOU H, LIU Z X, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J].ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. [43]SHOEIBI S, SAEMIAN M, KARGARSHARIFABAD H, et al. A review on evaporation improvement of solar still desalination using porous material[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106387. [44]MENG B, LIU G, MAO Y, et al. Fabrication of surface-charged MXene membrane and its application for water desalination[J]. Journal of Membrane Science, 2021, 623: 119076. [45]TANG S, WU Z, FENG G, et al. Multifunctional sandwich-like composite film based on superhydrophobic mxene for self-cleaning, photodynamic and antimicrobial applications[J]. SSRN Electronic Journal, 2022, 454: 140457. [46]DING L, LI L, LIU Y, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 2020, 3(4): 296-302. [47]IBRAHIM I, SEO D H, MCDONAGH A M, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination, 2021, 500: 114853. [48]ZHANG L, BAI B, HU N, et al. Efficient 3D-interfacial solar steam generation enabled by photothermal nanodiamonds paint-coat with optimized heat management[J]. Applied Thermal Engineering, 2020, 171: 115059. [49]BAI B, YANG X, TIAN R, et al. A high efficiency solar steam generation system with using residual heat to enhance steam escape[J]. Desalination, 2020, 491: 114382. [50]HUANG J, HE Y, HU Y, et al. Steam generation enabled by a high efficiency solar absorber with thermal concentration[J]. Energy, 2018, 165: 1282-1291. [51]HU C, LI W, ZHAO H Y, et al. Salt-resistant wood-based solar steam generator with top-down water supply for high-yield and long-term desalination of seawater and brine water[J]. Chemical Engineering Journal, 2023, 460: 141622. [52]YANG J, CHEN Y, JIA X, et al. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 47029-47037. [53]江金鱼,何浩宇,黄磊,等.碳纤维增强环氧树脂复合板材的制备及其各向异性传热和弹性变形行为[J/OL].现代纺织技术:1-8[2023-05-30].DOI:10.19398/j.att.202211039. JIANG Jinyu, HE Haoyu, HUANG Lei, et al. Preparation, anisotropic heat transfer and elastic deformation of CF/EP composite plates[J/OL], Advanced Textile Technology:1-8[2023-05-30].DOI:10.19398/j.att.202211039. [54]TAN M, WANG J, SONG W, et al. Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(3): 1244-1251. [55]LI T A, LIU H, ZHAO X P, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport[J]. Advanced Functional Materials,2018, 28(16):1707134. |
[1] | 吴骏, 徐天, 于坤. 基于深度学习的机织物起毛起球客观评级分析[J]. 现代纺织技术, 2024, 32(1): 1-8. |
[2] | 胡嵩, 童梦霞, 张俊, 范振远, 张毅. 基于红外图像的织物水分动态传递性能测定方法[J]. 现代纺织技术, 2024, 32(1): 9-17. |
[3] | 倪嘉陆, 王若雯, 石文慧, 袁志磊, 徐平华. 基于机器视觉的机织物耐静水压性能检测[J]. 现代纺织技术, 2024, 32(1): 18-26. |
[4] | 朱秋昱, 张斌, 沈晓杰, 陈秋霖, 王磊, 余志成. 季铵盐阳离子改性剂的合成及其在栀子黄染色棉织物中的应用[J]. 现代纺织技术, 2024, 32(1): 80-89. |
[5] | 唐奇, 何奕, 郑今欢, 王成龙, 王直成, 柴丽琴. 改善Lyocell纤维原纤化的连续式无盐轧染工艺[J]. 现代纺织技术, 2023, 31(6): 9-16. |
[6] | 徐兆梅, 马廷方, 付飞亚, 刘向东, 姚菊明. 季铵盐/两性壳聚糖改性真丝织物及其协同增效作用#br#[J]. 现代纺织技术, 2023, 31(6): 17-27. |
[7] | 董欣欣, 张华, 郑敏. 光热-光催化双功能Au@Cu2O二元异质结的制备及其对水的清洁处理[J]. 现代纺织技术, 2023, 31(6): 43-50. |
[8] | 张 欣, 周 赳. 三纬叠花闪色数码提花织物的创新设计[J]. 现代纺织技术, 2023, 31(6): 130-137. |
[9] | 吴翔翔, 王革辉, 邵雪宁, 赵涛. 具有开放衣下空气层的织物系统水汽传递性能[J]. 现代纺织技术, 2023, 31(6): 145-151. |
[10] | 宋委娜, 刘成霞. 织物悬垂性能的各向差异性研究[J]. 现代纺织技术, 2023, 31(6): 160-168. |
[11] | . 纬编针织物真实感建模与仿真进展[J]. 现代纺织技术, 2023, 31(6): 255-266. |
[12] | 孔德玉, 郭立芸, 冯新星, 张华鹏. 硝酸银质量浓度对化学镀银织物隔热性能的影响[J]. 现代纺织技术, 2023, 31(5): 181-189. |
[13] | 陈帆, 金万慧, 王騊. 定向导水Janus复合棉织物制备及其凉感性能[J]. 现代纺织技术, 2023, 31(5): 190-197. |
[14] | 张 鸿, 车珺雯, 曾介祥, 汤 松, 张志强. 基于双网络相变气凝胶制备的调温保温织物性能[J]. 现代纺织技术, 2023, 31(5): 230-239. |
[15] | 刘延波, 张天艺, 庞蓉蓉, 陈志军, 杨波. 层压复合防酸织物的制备及其性能[J]. 现代纺织技术, 2023, 31(5): 240-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||