[1] MING T Z, GONG T R, DE RICHTER R K, et al. Freshwater generation from a solar chimney power plant[J]. Energy Conversion and Management, 2016, 113: 189-200.
[2] ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
[3] RAMASAMY G, RAJKUMAR P K, NARAYANAN M. Generation of energy from salinity gradients using capacitive reverse electro dialysis: A review[J]. Environmental Science and Pollution Research, 2021, 28(45): 63672-63681.
[4] ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
[5] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research. 2021, 42(12): 167-173.
[6] REN P, LI J, ZHANG X, et al. Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material[J]. Materials Today Energy, 2020, 18: 100546.
[7] WANG Z T, WANG M L, WANG X X, et al. Photothermal-based nanomaterials and photothermal-sensing: An overview[J]. Biosensors and Bioelectronics, 2023, 220: 114883.
[8] TAS C E, BERKSUN E, KOKEN D, et al. Photothermal waterborne polydopamine/polyurethanes with light-to-heat conversion properties[J]. ACS Applied Polymer Materials, 2021, 3(8): 3929-3940.
[9] 张坚群, 申震, 厉宸希, 等. 基于界面蒸发的太阳能蒸馏器海水淡化性能研究[J]. 水处理技术, 2022, 48(6): 68-71.
ZHANG Jianqun, SHEN Zhen, LI Chenxi, et al. Desalination performance of interfacial evaporation modified solar stills[J]. Technology of Water Treatment, 2022, 48(6): 68-71.
[10] 谢梦玉, 胡啸林, 李星, 等. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(4): 117-123.
XIE Mengyu, HU Xiaolin, LI Xing, et al. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose muliti-layer composite[J]. Journal of Textile Research, 2022, 43(4): 117-123.
[11] DING Y, FENG K, HE P P, et al. A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment[J]. Sustainable Energy & Fuels, 2021, 5(21): 5627-5637.
[12] HAO D D, YANG Y D, XU B, et al. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10789-10797.
[13] MENG X F, ZHOU K, QIAN Y, et al. Hollow cuprous Oxide@Nitrogen-doped carbon nanocapsules for cascade chemodynamic therapy[J]. Small, 2022, 18(15): 2107422.
[14] LI S, MO Q L, XIAO Y, et al. Maneuvering cuprous oxide-based photocathodes for solar-to-fuel conversion[J]. Coordination Chemistry Reviews, 2023, 477: 214948.
[15] ZHAO Y Y, TIAN S W, LIN D L, et al. Functional anti-corrosive and anti-bacterial surface coatings based on cuprous oxide/polyaniline microcomposites[J]. Materials & Design, 2022, 216: 110589.
[16] YUAN L, GENG Z Y, XU J K, et al. Metal-semiconductor heterostructures for photoredox catalysis: where are we now and where do we go?[J]. Advanced Functional Materials, 2021, 31(27): 2101103.
[17] HAN C, QI M Y, TANG Z R, et al. Gold nanorods-based hybrids with tailored structures for photoredox catalysis: fundamental science, materials design and applications[J]. Nano Today, 2019, 27: 48-72.
[18] GELLÉ A, JIN T, DE LA GARZA L, et al. Applications of plasmon-enhanced nanocatalysis to organic transformations[J]. Chemical Reviews, 2020, 120(2): 986-1041.
[19] WU T, KOU Y C, ZHENG H, et al. A novel Au@Cu2O-Ag ternary nanocomposite with highly efficient catalytic performance: towards rapid reduction of methyl orange under dark condition[J]. Nanomaterials, 2019, 10(1): 48.
[20] MA Y J, LIU X Y, WEI X D, et al. Yolk-shelled Gold@Cuprous oxide nanostructures with hot carriers boosting photocatalytic performance[J]. Langmuir, 2021, 37(15): 4578-4586. |