[1]CHEN Y, LI J N, XIAO H X, et al. Dual path network [C]//NIPS, Long Beach, California, USA, 2017: 4407-4478.
[2]刘慧.对服装产品质量问题投诉的分析探讨[J].中国纤检,2019(5):40-42.
LIU Hui. Discussion and analysis on quality complaints of garment products[J]. China Fiber Inspection, 2019(5):40-42.
[3]孙红玉, 夏燕茂, 李兴华, 等. 生产工艺对机织物抗起毛起球性能的影响[J]染整技术, 2019(41): 58-63.
SUN Hongyu, XIA Yanmao, LI Xinghua, et al. Effect of production technology on anti-pilling performance of woven fabrics[J]. Textile Dyeing and Finishing Journal, 2019(41): 58-63.
[4]KAYSERI G Ö, KIRTAY E. Part 1. Predicting the pilling tendency of the cotton interlock knitted fabrics by regression analysis[J]. Journal of Engineered Fibers and Fabrics, 2015, 10(3): 155892501501000.
[5]崔新辉.织物起毛起球图像处理研究[D]. 杭州: 浙江理工大学, 2016.
CUI Xinhui. The Research on Image Processing of Fabric Pilling[D]. Hangzhou: Zhejiang Sci-Tech University, 2016.
[6]KONDA A, XIN L C, TAKADERA M, et al. Evaluation of pilling by computer image analysis[J]. Journal of the textile Machinery Society of Japan, 1990, 36(3): 96-107.
[7]蔡林莉, 黄志威, 叶春收, 等. 基于图像处理的粗梳毛织物起毛起球等级客观评定[J]. 毛纺科技, 2013, 41(2): 58-61.
CAI Linli, HUANG Zhiwei, YE Chunshou, et al. Research on objective evaluation of fabric spray test based on image processing[J]. Wool Textile Journal, 2013, 41(2): 58-61.
[8]HU J L, XIN B J. Image based modeling and analysis of textile materials[M]//The International Series in Engineering and Computer Science. Boston: Kluwer Academic Publishers, 2006: 283-307.
[9]LIU X J. Segmentation for fabric pilling images based on edge flow [C]//2009 Second International Conference on Information and Computing Science. May 21-22, 2009, Manchester, UK. IEEE, 2009: 369-372.
[10]XU B. Instrumental evaluation of fabric pilling[J]. The Journal of The Textile Institute, 1997, 88(4): 488-500.
[11]PALMER S, WANG X G. Objective classification of fabric pilling based on the two-dimensional discrete wavelet transform[J]. Textile Research Journal, 2003, 73(8): 713-720.
[12]JING J F, ZHANG Z Z, KANG X J, et al. Objective evaluation of fabric pilling based on wavelet transform and the local binary pattern[J]. Textile Research Journal, 2012, 82(18): 1880-1887.
[13]ZHANG J M, WANG X G, Palmer S. Objective grading of fabric pilling with wavelet texture analysis[J]. Textile Research Journal, 2007, 77(11): 871-879.
[14]XU Z B, YANG H S. Fabric pilling object detection based on scale-space extremum[C]//2015 2nd International Conference on Information Science and Control Engineering. April 24-26, 2015, Shanghai, China. IEEE, 2015: 229-233.
[15]FURFERI R, CARFAGNI M, GOVERNI L, et al. Towards automated and objective assessment of fabric pilling[J]. International Journal of Advanced Robotic Systems, 2014, 11(10):171.
[16]YU L J, WANG R W, ZHOU J F. Performance of the pilling evaluation method based on the technique of DFF[J]. Industria Textila, 2017, 68(1): 13-16.
[17]XIAO Q, WANG R, ZHANG S J, et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models[J]. Journal of Engineered Fibers and Fabrics, 2020, 15:155892501990015.
[18]IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. 2016: arXiv: 1602.07360. https://arxiv.org/abs/1602.07360.
[19]王林.基于双分支特征融合网络的毛针织物起毛起球评级方法研究[D].天津:天津工业大学,2021.
WANG Lin. Research on Pilling Rating Method of Wool Knitted Fabrics Based on Double Branch Feature Fusion Network [D]. Tianjin: Tiangong University, 2021.
[20]LIU Y T, LIU Q S. Convolutional neural networks with large-margin softmax loss function for cognitive load recognition[C]//2017 36th Chinese Control Conference (CCC). July 26-28, 2017, Dalian, China. IEEE, 2017: 4045-4049.
[21]ZHAO Y, WANG G, TANG C, et al. A battle of network structures: An empirical study of CNN, transformer, and MLP[J]. Computer Vision and Pattern Recognition, 2021, 1: 1-10.
[22]HINTON G E, NAIR V. Rectified linear units improve restricted boltzmann machines vinod nair[C]. International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 807-814.
|