[1]WEI T, RUI L, YIBING S, et al. From finger friction to brain activation: Tactile perception of the roughness of gratings[J]. Journal of Advanced Research, 2020, 21: 129-139.
[2]JEONG J R, KIM H E. Assessment of the wear comfort of outdoorwear by ECG and EEG analyses[J]. Journal of the Korean Society of Clothing and Textiles, 2009, 33(10): 1665-1672.
[3]HAN J, CHUN C. Differences between EEG during thermal discomfort and thermal displeasure[J]. Building and Environment, 2021, 204: 108220.
[4]贺润音, 吴雨曦, 王朝晖, 等. 相变材料调温服装调温性能研究进展[J]. 国际纺织导报, 2020, 48(11): 47-54.
HE Runyin, WU Yuxi, WANG Chaohui, et al. Research progress of temperature regulating properties of PCM fabrics[J]. Melliand China, 2020, 48(11): 47-54.
[5]陈若颖, 苏云, 王云仪. 相变材料在消防服中的应用研究进展[J]. 产业用纺织品, 2020, 38(4): 1-6.
CHEN Ruoying, SU Yun, WANG Yunyi. Research progress on the application of phase change materials in fire-fighting protective clothing[J]. Technical Textiles, 2020, 38(4): 1-6.
[6]李振, 石凌飞, 鄢友娟, 等. 新型单向导湿警用体能训练服面料的开发[J]. 纺织导报, 2021(9): 66-68.
LI Zhen, SHI Lingfei, YAN Youjuan, et al. Development of new unidirectional moisture-management fabric for police physical training clothes[J]. China Textile Leader, 2021(9): 66-68.
[7]彭福建, 李煜炜, 周昕妍, 等. 织物热湿舒适性影响因素及评价方法[J]. 现代丝绸科学与技术, 2019, 34(3): 32-36.
PENG Fujian, LI Yuwei, ZHOU Xinyan, et al. Influencing factors and evaluation methods of thermal and wet comfort of fabrics[J]. Modern Silk Science & Technology, 2019, 34(3): 32-36.
[8]沈丽丽, 邢阳. 基于脑电的水平运动立体影像视疲劳评估[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(3): 259-264.
SHEN Lili, XING Yang. Visual fatigue assessment of stereoscopic images in lateral motion based on EEG[J]. Journal of Tianjin University (Science and Technology), 2020, 53(3): 259-264.
[9]聂玮, 贾江旭, 王敉敉, 等. 基于脑电实验的虚拟现实环境全景绿视率对人体愉悦度的影响研究[J]. 景观设计学(中英文), 2022, 10(2): 36-51.
NIE Wei, JIA Jiangxu, WANG Mimi, et al. Research on the impact of panoramic green view index of virtual reality environments on individuals' pleasure level based on EEG experiment[J]. Landscape Architecture Frontiers, 2022, 10(2): 36-51.
[10]向芳, 刘睿旭, 靳静娜, 等. 重复经颅磁刺激联合运动训练对脑活动影响的溯源分析[J]. 生物医学工程研究, 2018, 37(2): 121-126.
XIANG Fang, LIU Ruixu, JIN Jingna, et al. Using source localisation method to analyze the effect of
cortical activity by rTMS with motor training[J]. Journal of Biomedical Engineering Research, 2018, 37(2): 121-126.
[11]周晶晶, 叶继伦, 张旭, 等. 脑电信号分析方法及其应用[J].中国医疗器械杂志, 2020, 44(2): 122-126.
ZHOU Jingjing, YE Jilun, ZHANG Xu, et al. EEG signal analysis methods and their applications[J]. Chinese Journal of Medical Instrumentation, 2020, 44(2): 122-126.
[12]周阳, 周宇. 基于Welch法的右侧脑区静息脑电信号的频域相干性分析[J]. 中国医疗器械信息, 2017, 23(19): 29-30.
ZHOU Yang, ZHOU Yu. Frequency-domain coherence analysis of resting EEG signals in the right brain region based on the welch method[J]. China Medical Device Information, 2017, 23(19): 29-30.
[13]王恁, 周子敬, 赵云芃, 等. 基于无线脑电信号分析的实时疲劳驾驶检测与预警研究[J]. 太原理工大学学报, 2020, 51(6): 852-859.
WANG Nen, ZHOU Zijing, ZHAO Yunpeng, et al. Research on Real-Time fatigue driving detection and early warning based on wireless EEG signal analysis[J]. Journal of Taiyuan University of Technology, 2020, 51(6): 852-859.
[14]MANSI S A, BARONE G, FORZANO C, et al. Measuring human physiological indices for thermal comfort assessment through wearable devices: a review[J]. Measurement, 2021, 183: 109872.
[15]马希明, 丁殷佳, 王利君. 显汗状态下运动服面料动态热湿舒适性预测[J]. 丝绸, 2020, 57(2): 6-12.
MA Ximing, DING Yinjia, WANG Lijun. Prediction of dynamic thermal and wet comfort of sportswear fabric under the sweat state[J]. Journal of Silk, 2020, 57(2): 6-12.
[16]石乔莉, 王延辉, 李信政. 基于脑电信号的驾驶疲劳的研究[J]. 世界最新医学信息文摘, 2017, 17(55): 32.
SHI Qiaoli, WANG Yanhui, LI Xinzheng. Research on driving fatigue based on EEG signal[J]. World Latest Medicine Information, 2017, 17(55): 32.
|