[1]HAJIMOHAMMADI M, SOLTANI P, SEMNANI D, et al. Nonwoven fabric coated with core-shell and hollow nanofiber membranes for efficient sound absorption in buildings[J]. Building and Environment, 2022, 213: 108887.
[2]金关秀,祝成炎.孔隙形状对熔喷非织造布过滤品质的影响[J].上海纺织科技,2018,46(11):15-18.
JIN Guanxiu, ZHU Chengyan. Effect of pore shape on the filter quality of melt-blown nonwoven[J].Shanghai Textile Science & Technology, 2018,46(11):15-18.
[3]田伟,雷新,从明芳,等.纺粘非织造布制备工艺与性能的关系[J].纺织学报,2015,36(11):68-71.
TIAN Wei,LEI Xin,CONG Mingfang,et al. Relationship between manufacture process and performance for spunbond nonwoven[J].Journal of Textile Research,2015,36(11):68-71.
[4]潘莺,王善元.模拟熔喷纤网的孔径分布及其对过滤性能的影响[J].中国纺织大学学报, 2000, 26(5):73-77.
PAN Ying, Wang Shanyuan. Simulation of melt blown web and the effect of its poresize distribution on filtration performance[J]. Journal of China Textile University, 2000, 26(5):73-77.
[5]SIMMONDS G E, BOMBERGER J D, BRYNER M A. Designing nonwovens to meet pore size specifications[J]. Journal of Engineered Fibers and Fabrics,2007,2(1):155892500700200.
[6]金关秀,祝成炎.基于图像模拟和支持向量机的复合非织造布孔隙尺寸预测[J].纺织学报,2022,43(12):75-81.
JIN Guanxiu,ZHU Chengyan. Prediction of pore dimension in composite nonwovens based on image simulation and support vector machine[J]. Journal of Textile Research,2022,43(12):75-81.
[7]杨旭红.非织造材料(纤维网)形态结构的表征与分形模拟[D].苏州:苏州大学,2003:27-30.
YANG Xuhong. Expression and fractal simulation of morphologic structures of nonwovens[D]. Suzhou: Soochow University,2003:27-30.
[8]高贵.利用分形理论研究非织造布的结构及透通性[D].天津:天津工业大学,2005:38-45.
GAO Gui. Using fractal theory to study the structure and permeability of nonwoven fabrics[D]. Tianjin:Tianjin Polytechnic University, 2005:38-45.
[9]WANG J, SHI Q, AKANKWASA N T, et al. Establishment of the three-dimensional model of the nonwoven structure with fiber scale based on the GAN algorithm[J]. Textile Research Journal, 2022, 92(9/10): 1656-1665.
[10]AYDILEK A H,OGUZ S H,EDIL T B. Constriction size of geotextile filters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 28-38.
[11]CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[12]GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[13]LIU H, GU X, SAMARAS D. Wasserstein GAN with quadratic transport cost[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2020: 4831-4840.
[14]ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 2242-2251.
[15]ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[EB/OL]. 2018: arXiv: 1805.08318. https://arxiv.org/abs/1805.08318.
[16]KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL].2017: arXiv:1710.10196. https://arxiv.org/abs/1710.10196.
[17]SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):1-48.
[18]RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].2015: arXiv:1511.06434.https://arxiv.org/abs/1511.06434.
[19]GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,2017:5769-5779.
[20]BERTHELOT D, SCHUMM T, METZ L. Began: Boundary equilibrium generative adversarial networks[EB/OL].2015: arXiv:1511.06434. https://arxiv.org/abs/1511.06434.
[21]张潇,贺晓亚.计算机图像技术在织物性能测试分析中的应用[J].国际纺织导报,2022,50(4):32-35.
ZHANG Xiao, He Xiaoya. Application of computer image technology in fabric properties testing and analysis[J]. Melliand China,2022,50(4):32-35.
|