[1] BAKER R E, MAHMUD A S, MILLER I F, et al. Infectious disease in an era of global change[J]. Nature Reviews Microbiology, 2022, 20(4): 193-205.
[2] 杨玉荣, 张晓妍, 邹明辰, 等. 光动力广谱抗菌型复合材料的制备及性能研究[J]. 化工新型材料, 2021, 49(S1): 264-267.
YANG Yurong, ZHANG Xiaoyan, ZOU Mingchen, et al. Preparation and property of photodynamic broad-spectrum antibacterial composite[J]. New Chemical Materials, 2021, 49(S1): 264-267.
[3] NGUYEN V N, ZHAO Z, TANG B Z, et al. Organic photosensitizers for antimicrobial phototherapy[J]. Chemical Society Reviews, 2022, 51(9): 3324-3340.
[4] LI T T, WU Y, CAI W T, et al. Vision defense: Efficient antibacterial AIEgens induced early immune response for bacterial endophthalmitis[J]. Advanced Science, 2022, 9(25): 2202485.
[5] HU F, XU S D, LIU B. Photosensitizers with aggregation-induced emission: materials and biomedical applications[J]. Advanced Materials, 2018, 30(45): 1801350.
[6] ZHU J X, WEN H Y, ZHANG H, et al. Recent advances in biodegradable electronics-from fundament to the next-generation multi-functional, medical and environmental device[J]. Sustainable Materials and Technologies, 2023, 35: e00530.
[7] HU R, QIN A J, TANG B Z. AIE polymers: Synthesis and applications[J]. Progress in Polymer Science, 2020, 100: 101176.
[8] 苏芳芳, 经渊, 宋立新, 等. 我国静电纺丝领域研究现状及其热点:基于CNKI数据库的可视化文献计量分析[J]. 东华大学学报(自然科学版), 2024,50(1):45-54.
SU Fangfang, JING Yuan, SONG Lixin, et al. Present situation and hotspot of electrospinning in China: Visual bibliometric analysis based on CNKI database[J]. Journal of Donghua University (Natural Science), 2024,50(1):45-54.
[9] LI M, WEN H F, LI H X, et al. AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection[J]. Biomaterials, 2021, 276: 121007.
[10] WANG Y J, Shi Y, Wang Z Y, et al. A red to near-IR fluorogen: Aggregation-induced emission, large stokes shift, high solid efficiency and application in cell-imaging[J]. Chemistry–A European Journal, 2016, 22(28): 9784-9791.
[11] LIN J, YAO Z, XIONG M M, et al. Directional transport of drug droplets based on structural and wettability gradients on antibacterial Janus wound plaster with hemostatic, antiextravasation, and prehealing properties[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 193.
[12] LIU S S, WANG B N, YU Y W, et al. Cationization-enhanced type I and type II ROS generation for photodynamic treatment of drug-resistant bacteria[J]. ACS Nano, 2022, 16(6): 9130-9141.
[13] HO T H, HONG S Y, YANG C H, et al. Preparation of green emission and red emission ligand-free upconverting nanoparticles for investigation of the generation of reactive oxygen species applied to photodynamic therapy[J]. Journal of Alloys and Compounds, 2022, 893: 162323.
[14] YANG D L, TU Y X, WANG X R, et al. A photo-triggered antifungal nanoplatform with efflux pump and heat shock protein reversal activity for enhanced chemo-photothermal synergistic therapy[J]. Biomaterials Science, 2021, 9(9): 3293-3299.
[15] LEE M M S, YU E Y, YAN D Y, et al. The role of structural hydrophobicity on cationic amphiphilic aggregation-induced emission photosensitizer-bacterial interaction and photodynamic efficiency[J]. ACS Nano, 2023, 17(17): 17004-17020.
|